Prolonged sulforaphane treatment does not enhance tumorigenesis in oncogenic K-ras and xenograft mouse models of lung cancer

Ponvijay Kombairaju, Jinfang Ma, Rajesh Thimmulappa, G. Yan, Edward Gabrielson, Anju Singh, Shyam Biswal

Research output: Contribution to journalArticle

Abstract

Background: Sulforaphane (SFN), an activator of nuclear factor erythroid-2 related factor 2 (Nrf2), is a promising chemopreventive agent which is undergoing clinical trial for several diseases. Studies have indicated that there is gain of Nrf2 function in lung cancer and other solid tumors because of mutations in the inhibitor Kelch-like ECH-associated protein 1 (Keap1). More recently, several oncogenes have been shown to activate Nrf2 signaling as the main prosurvival pathway mediating ROS detoxification, senescence evasion, and neoplastic transformation. Thus, it is important to determine if there is any risk of enhanced lung tumorigenesis associated with prolonged administration of SFN using mouse models of cancer. Materials and Methods: We evaluated the effect of prolonged SFN treatment on oncogenic K-ras (K-ras LSL-G12D )-driven lung tumorigenesis. One week post mutant-K-ras expression, mice were treated with SFN (0.5 mg, 5 d/wk) for 3 months by means of a nebulizer. Fourteen weeks after mutant K-ras expression (K-ras LSL-G12D ), mice were sacrificed, and lung sections were screened for neoplastic foci. Expression of Nrf2-dependent genes was measured using real time RT-PCR. We also determined the effect of prolonged SFN treatment on the growth of preclinical xenograft models using human A549 (with mutant K-ras and Keap1 allele) and H1975 [with mutant epidermal growth factor receptor (EGFR) allele] nonsmall cell lung cancer cells. Results: Systemic SFN administration did not promote the growth of K-ras LSL-G12D-induced lung tumors and had no significant effect on the growth of A549 and H1975 established tumor xenografts in nude mice. Interestingly, localized delivery of SFN significantly attenuated the growth of A549 tumors in nude mice, suggesting an Nrf2-independent antitumorigenic activity of SFN. Conclusions: Our results demonstrate that prolonged SFN treatment does not promote lung tumorigenesis in various mouse models of lung cancer.

Original languageEnglish (US)
Article number8
JournalJournal of Carcinogenesis
Volume11
DOIs
StatePublished - Dec 1 2012

    Fingerprint

Keywords

  • EGFR
  • K-ras
  • Keap1
  • Nrf2
  • lung cancer
  • sulforaphane

ASJC Scopus subject areas

  • Oncology
  • Cancer Research
  • Health, Toxicology and Mutagenesis

Cite this