Prescription opioids. V. metabolism and excretion of oxymorphone in urine following controlled single dose administration

Anne Z. DePriest, Rebecca Heltsley, David L. Black, John M. Mitchell, Charles LoDico, Ronald Flegel, Edward J. Cone

Research output: Contribution to journalArticlepeer-review


Oxymorphone (OM), a prescription opioid and metabolite of oxycodone, was included in the recently published proposed revisions to the Mandatory Guidelines for Federal Workplace Drug Testing Programs. To facilitate toxicological interpretation, this study characterized the time course of OM and its metabolite, noroxymorphone (NOM), in hydrolyzed and non-hydrolyzed urine specimens. Twelve healthy subjects were administered a single 10 mg controlled-release OM dose, followed by a periodic collection of pooled urine specimens for 54 h following administration. Analysis for free and total OM and NOM was conducted by liquid chromatography tandem mass spectrometry (LC-MS-MS), at a 50 ng/mL limit of quantitation (LOQ). Following enzymatic hydrolysis, OM and NOM were detected in 89.9% and 13.5% specimens, respectively. Without hydrolysis, OM was detected in 8.1% specimens, and NOM was not detected. The mean ratio of hydrolyzed OM to NOM was 41.6. OM was frequently detected in the first pooled collection 0-2 h post-dose, appearing at a mean of 2.4 h. NOM appeared at a mean of 8.3 h. The period of detection at the 50 ng/mL threshold averaged 50.7 h for OM and 11.0 h for NOM. These data support that OM analysis conducted using a 50 ng/mL threshold should include hydrolysis or optimize sensitivity for conjugated OM.

Original languageEnglish (US)
Pages (from-to)566-574
Number of pages9
JournalJournal of analytical toxicology
Issue number8
StatePublished - Oct 1 2016

ASJC Scopus subject areas

  • Analytical Chemistry
  • Environmental Chemistry
  • Toxicology
  • Health, Toxicology and Mutagenesis
  • Chemical Health and Safety


Dive into the research topics of 'Prescription opioids. V. metabolism and excretion of oxymorphone in urine following controlled single dose administration'. Together they form a unique fingerprint.

Cite this