TY - JOUR
T1 - Preferential activation of nuclear factor of activated T cells c correlates with mouse strain susceptibility to allergic responses and interleukin-4 gene expression
AU - Keen, J. C.
AU - Sholl, L.
AU - Wills-Karp, M.
AU - Georas, S. N.
PY - 2001
Y1 - 2001
N2 - Dysregulated expression of the T helper 2 cytokine interleukin (IL)-4 is thought to play a fundamental role in the pathogenesis of allergic asthma. The molecular basis for dysregulated IL-4 production is not well understood. We analyzed in detail the molecular factors involved in regulating IL-4 transcription in a well-characterized mouse model. In this model, A/J mice developed allergen-induced IL-4 cytokine gene expression, airway inflammation, and hyperresponsiveness, whereas C3H/HeJ (C3H) mice did not. Here we report that isolated splenocytes from A/J and C3H mice stimulated ex vivo with concanavalin A reproduced the cytokine phenotype observed in the airway after antigen challenge. We hypothesized that differences in splenocyte IL-4 production involved either polymorphisms in regulatory IL-4 promoter regions, or the expression and activation of transcription factors necessary for promoter transactivation in a strain-dependent manner. To address these questions, we first sequenced ∼ 700 base pairs containing well-characterized IL-4 promoter regulatory elements using genomic DNA obtained from C3H and A/J mice. Next, we used electrophoretic mobility shift assays with relevant IL-4 promoter sequences to screen nuclear extracts isolated from A/J and C3H splenocytes for functional transcriptional factor complexes. Here we show that susceptibility to antigen-induced airway hyperresponsiveness is not due to polymorphisms in the IL-4 promoter, but is associated with preferential expression of nuclear factor of activated T cells c in splenocyte nuclear extracts obtained from A/J mice. In conclusion, our data link dysregulated activation of a specific transcription factor with susceptibility to allergic airway inflammation.
AB - Dysregulated expression of the T helper 2 cytokine interleukin (IL)-4 is thought to play a fundamental role in the pathogenesis of allergic asthma. The molecular basis for dysregulated IL-4 production is not well understood. We analyzed in detail the molecular factors involved in regulating IL-4 transcription in a well-characterized mouse model. In this model, A/J mice developed allergen-induced IL-4 cytokine gene expression, airway inflammation, and hyperresponsiveness, whereas C3H/HeJ (C3H) mice did not. Here we report that isolated splenocytes from A/J and C3H mice stimulated ex vivo with concanavalin A reproduced the cytokine phenotype observed in the airway after antigen challenge. We hypothesized that differences in splenocyte IL-4 production involved either polymorphisms in regulatory IL-4 promoter regions, or the expression and activation of transcription factors necessary for promoter transactivation in a strain-dependent manner. To address these questions, we first sequenced ∼ 700 base pairs containing well-characterized IL-4 promoter regulatory elements using genomic DNA obtained from C3H and A/J mice. Next, we used electrophoretic mobility shift assays with relevant IL-4 promoter sequences to screen nuclear extracts isolated from A/J and C3H splenocytes for functional transcriptional factor complexes. Here we show that susceptibility to antigen-induced airway hyperresponsiveness is not due to polymorphisms in the IL-4 promoter, but is associated with preferential expression of nuclear factor of activated T cells c in splenocyte nuclear extracts obtained from A/J mice. In conclusion, our data link dysregulated activation of a specific transcription factor with susceptibility to allergic airway inflammation.
UR - http://www.scopus.com/inward/record.url?scp=0035145797&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035145797&partnerID=8YFLogxK
U2 - 10.1165/ajrcmb.24.1.3870
DO - 10.1165/ajrcmb.24.1.3870
M3 - Article
C2 - 11152651
AN - SCOPUS:0035145797
SN - 1044-1549
VL - 24
SP - 58
EP - 65
JO - American Journal of Respiratory Cell and Molecular Biology
JF - American Journal of Respiratory Cell and Molecular Biology
IS - 1
ER -