Predicting Response of Spontaneously Firing Afferents to Prosthetic Pulsatile Stimulation

Cynthia R. Steinhardt, Gene Y. Fridman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Pulsatile electrical stimulation is used in neural prostheses such as the vestibular prosthesis. In a healthy vestibular system, head motion is encoded by changes in the firing rates of afferents around their spontaneous baseline rate. For people suffering from bilateral vestibular disorder (BVD), head motion no longer modulates firing rate. Vestibular prostheses use a gyroscope to detect head motion and stimulate neurons directly in a way that mimics natural modulation. Proper restoration of vestibular function relies on the ability of stimulation to evoke the same firing patterns as the healthy system. For this reason, it is necessary to understand what firing rates are produced for different stimulation parameters. Two stimulation parameters commonly controlled in pulsatile neuromodulation are pulse rate and pulse amplitude. Previous neural recording experiments in the vestibular nerve contradict widely held assumptions about the relationship between pulse rates and evoked spike activity, and the relationship between pulse amplitude and neural activity has not been explored. Here we use a well-established computational model of the vestibular afferent to simulate responses to different pulse rates and amplitudes. We confirm that our simulated neural results agree with the existing experimental data. Finally, we developed the 'Action Potential Collision' (APC) equation that defines induced firing as a function of spontaneous firing rate, pulse rate, and pulse amplitude. We show that this relationship can successfully predict simulated vestibular activity by accounting for interactions between pulses and spontaneous firing.

Original languageEnglish (US)
Title of host publication42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEnabling Innovative Technologies for Global Healthcare, EMBC 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2929-2933
Number of pages5
ISBN (Electronic)9781728119908
DOIs
StatePublished - Jul 2020
Event42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020 - Montreal, Canada
Duration: Jul 20 2020Jul 24 2020

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2020-July
ISSN (Print)1557-170X

Conference

Conference42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, EMBC 2020
CountryCanada
CityMontreal
Period7/20/207/24/20

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Predicting Response of Spontaneously Firing Afferents to Prosthetic Pulsatile Stimulation'. Together they form a unique fingerprint.

Cite this