Predicting mortality from 57 economic, behavioral, social, and psychological factors

Eli Puterman, Jordan Weiss, Benjamin A. Hives, Alison Gemmill, Deborah Karasek, Wendy Berry Mendes, David H. Rehkopf

Research output: Contribution to journalArticlepeer-review

Abstract

Behavioral and social scientists have identified many nonbiological predictors of mortality. An important limitation of much of this research, however, is that risk factors are not studied in comparison with one another or from across different fields of research. It therefore remains unclear which factors should be prioritized for interventions and policy to reduce mortality risk. In the current investigation, we compare 57 factors within a multidisciplinary framework. These include (i) adverse socioeconomic and psychosocial experiences during childhood and (ii) socioeconomic conditions, (iii) health behaviors, (iv) social connections, (v) psychological characteristics, and (vi) adverse experiences during adulthood. The current prospective cohort investigation with 13,611 adults from 52 to 104 y of age (mean age 69.3 y) from the nationally representative Health and Retirement Study used weighted traditional (i.e., multivariate Cox regressions) and machine-learning (i.e., lasso, random forest analysis) statistical approaches to identify the leading predictors of mortality over 6 y of follow-up time. We demonstrate that, in addition to the well-established behavioral risk factors of smoking, alcohol abuse, and lack of physical activity, economic (e.g., recent financial difficulties, unemployment history), social (e.g., childhood adversity, divorce history), and psychological (e.g., negative affectivity) factors were also among the strongest predictors of mortality among older American adults. The strength of these predictors should be used to guide future transdisciplinary investigations and intervention studies across the fields of epidemiology, psychology, sociology, economics, and medicine to understand how changes in these factors alter individual mortality risk.

Original languageEnglish (US)
Pages (from-to)16273-16282
Number of pages10
JournalProceedings of the National Academy of Sciences of the United States of America
Volume117
Issue number28
DOIs
StatePublished - Jul 14 2020

Keywords

  • Behavioral
  • Data-driven
  • Mortality
  • Social
  • Transdisciplinary

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Predicting mortality from 57 economic, behavioral, social, and psychological factors'. Together they form a unique fingerprint.

Cite this