PPARΔ activation by bexarotene promotes neuroprotection by restoring bioenergetic and quality control homeostasis

Audrey S. Dickey, Dafne N. Sanchez, Martin Arreola, Kunal R. Sampat, Weiwei Fan, Nicolas Arbez, Sergey Akimov, Michael J. Van Kanegan, Kohta Ohnishi, Stephen K. Gilmore-Hall, April L. Flores, Janice M. Nguyen, Nicole Lomas, Cynthia L. Hsu, Donald C. Lo, Christopher A. Ross, Eliezer Masliah, Ronald M. Evans, Albert R. La Spada

Research output: Contribution to journalArticlepeer-review

Abstract

Neurons must maintain protein and mitochondrial quality control for optimal function, an energetically expensive process. The peroxisome proliferator–activated receptors (PPARs) are ligand-activated transcription factors that promote mitochondrial biogenesis and oxidative metabolism. We recently determined that transcriptional dysregulation of PPARd contributes to Huntington’s disease (HD), a progressive neurodegenerative disorder resulting from a CAG-polyglutamine repeat expansion in the huntingtin gene. We documented that the PPARd agonist KD3010 is an effective therapy for HD in a mouse model. PPARd forms a heterodimer with the retinoid X receptor (RXR), and RXR agonists are capable of promoting PPARd activation. One compound with potent RXR agonist activity is the U.S. Food and Drug Administration–approved drug bexarotene. We tested the therapeutic potential of bexarotene in HD and found that bexarotene was neuroprotective in cellular models of HD, including medium spiny-like neurons generated from induced pluripotent stem cells (iPSCs) derived from patients with HD. To evaluate bexarotene as a treatment for HD, we treated the N171-82Q mouse model with the drug and found that bexarotene improved motor function, reduced neurodegeneration, and increased survival. To determine the basis for PPARd neuroprotection, we evaluated metabolic function and noted markedly impaired oxidative metabolism in HD neurons, which was rescued by bexarotene or KD3010. We examined mitochondrial and protein quality control in cellular models of HD and observed that treatment with a PPARd agonist promoted cellular quality control. By boosting cellular activities that are dysfunctional in HD, PPARd activation may have therapeutic applications in HD and potentially other neurodegenerative diseases.

Original languageEnglish (US)
Article numbereaal2332
JournalScience translational medicine
Volume9
Issue number419
DOIs
StatePublished - Dec 6 2017

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'PPARΔ activation by bexarotene promotes neuroprotection by restoring bioenergetic and quality control homeostasis'. Together they form a unique fingerprint.

Cite this