Polyenergetic known-component reconstruction without prior shape models

C. Zhang, W. Zbijewski, X. Zhang, S. Xu, J. W. Stayman

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Purpose: Previous work has demonstrated that structural models of surgical tools and implants can be integrated into model-based CT reconstruction to greatly reduce metal artifacts and improve image quality. This work extends a polyenergetic formulation of known-component reconstruction (Poly-KCR) by removing the requirement that a physical model (e.g. CAD drawing) be known a priori, permitting much more widespread application. Methods: We adopt a single-threshold segmentation technique with the help of morphological structuring elements to build a shape model of metal components in a patient scan based on initial filtered-backprojection (FBP) reconstruction. This shape model is used as an input to Poly-KCR, a formulation of known-component reconstruction that does not require a prior knowledge of beam quality or component material composition. An investigation of performance as a function of segmentation thresholds is performed in simulation studies, and qualitative comparisons to Poly-KCR with an a priori shape model are made using physical CBCT data of an implanted cadaver and in patient data from a prototype extremities scanner. Results: We find that model-free Poly-KCR (MF-Poly-KCR) provides much better image quality compared to conventional reconstruction techniques (e.g. FBP). Moreover, the performance closely approximates that of Poly- KCR with an a prior shape model. In simulation studies, we find that imaging performance generally follows segmentation accuracy with slight under- or over-estimation based on the shape of the implant. In both simulation and physical data studies we find that the proposed approach can remove most of the blooming and streak artifacts around the component permitting visualization of the surrounding soft-tissues. Conclusion: This work shows that it is possible to perform known-component reconstruction without prior knowledge of the known component. In conjunction with the Poly-KCR technique that does not require knowledge of beam quality or material composition, very little needs to be known about the metal implant and system beforehand. These generalizations will allow more widespread application of KCR techniques in real patient studies where the information of surgical tools and implants is limited or not available.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2017
Subtitle of host publicationPhysics of Medical Imaging
EditorsTaly Gilat Schmidt, Joseph Y. Lo, Thomas G. Flohr
PublisherSPIE
ISBN (Electronic)9781510607095
DOIs
StatePublished - 2017
EventMedical Imaging 2017: Physics of Medical Imaging - Orlando, United States
Duration: Feb 13 2017Feb 16 2017

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10132
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2017: Physics of Medical Imaging
CountryUnited States
CityOrlando
Period2/13/172/16/17

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Polyenergetic known-component reconstruction without prior shape models'. Together they form a unique fingerprint.

Cite this