Polya peak: Detecting transcription factor binding sites from Ch IP-seq using peak shape information

Hao Wu, Hongkai Ji

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pó lya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available.

Original languageEnglish (US)
Article numbere89694
JournalPloS one
Volume9
Issue number3
DOIs
StatePublished - Mar 7 2014

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'Polya peak: Detecting transcription factor binding sites from Ch IP-seq using peak shape information'. Together they form a unique fingerprint.

Cite this