Physiological oxygen level is critical for modeling neuronal metabolism in vitro

Jing Zhu, Susan Aja, Eun Kyoung Kim, Min Jung Park, Santosh Ramamurthy, Junling Jia, Xueying Hu, Ping Geng, Gabriele V. Ronnett

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


In vitro models are important tools for studying the mechanisms that govern neuronal responses to injury. Most neuronal culture methods employ nonphysiological conditions with regard to metabolic parameters. Standard neuronal cell culture is performed at ambient (21%) oxygen levels, whereas actual tissue oxygen levels in the mammalian brain range from 1% to 5%. In this study, we examined the consequences of oxygen level on the viability and metabolism of primary cultures of cortical neurons. Our results indicate that physiological oxygen level (5% O 2) has a beneficial effect on cortical neuronal survival and mitochondrial function in vitro. Moreover, oxygen level affects metabolic fluxes: glucose uptake and glycolysis was enhanced at physiological oxygen level, whereas glucose oxidation and fatty acid oxidation were reduced. Adenosine monophosphate-activated protein kinase (AMPK) was more activated in 5% O 2 and appears to play a role in these metabolic effects. Inhibiting AMPK activity with compound C decreased glucose uptake, intracellular ATP level, and viability in neurons cultured in 5% O 2. These data indicate that oxygen level is an important parameter to consider when modeling neuronal responses to stress in vitro.

Original languageEnglish (US)
Pages (from-to)422-434
Number of pages13
JournalJournal of neuroscience research
Issue number2
StatePublished - Feb 2012


  • AMPK
  • Culture
  • Metabolism
  • Neuron
  • Oxygen

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Physiological oxygen level is critical for modeling neuronal metabolism in vitro'. Together they form a unique fingerprint.

Cite this