Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local β-actin synthesis and growth cone turning

Yukio Sasaki, Kristy Welshhans, Zhexing Wen, Jiaqi Yao, Mei Xu, Yoshio Goshima, James Q. Zheng, Gary J. Bassell

Research output: Contribution to journalArticlepeer-review

79 Scopus citations

Abstract

The localization of specific mRNAs and their local translation in growth cones of developing axons has been shown to play an important mechanism to regulate growth cone turning responses to attractive or repulsive cues. However, the mechanism whereby local translation and growth cone turning may be controlled by specific mRNA-binding proteins is unknown. Here we demonstrate that brain-derived neurotrophic factor (BDNF) signals the Src-dependent phosphorylation of the β-actinmRNAzipcode binding protein 1 (ZBP1), which is necessary for β-actin synthesis and growth cone turning. We raised a phospho-specific ZBP1 antibody to Tyr396, which is a Src phosphorylation site, and immunofluorescence revealed BDNF-induced phosphorylation of ZBP1 within growth cones. The BDNF-induced increase in fluorescent signal of a green fluorescent protein translation reporter with the 3′ untranslated region of β-actin was attenuated with the Src family kinase-specific inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. Furthermore, a nonphosphorylatable mutant, ZBP1 Y396F, suppressed the BDNF-induced and protein synthesis-dependent increase in β-actin localization in growth cones. Last, the ZBP1 Y396F mutant blocked BDNF-induced attractive growth cone turning. These results indicate that phosphorylation of ZBP1 at Tyr396 within growth cones has a critical role to regulate local protein synthesis and growth cone turning. Our findings provide new insight into how the regulated phosphorylation of mRNA-binding proteins influences local translation underlying growth cone motility and axon guidance.

Original languageEnglish (US)
Pages (from-to)9349-9358
Number of pages10
JournalJournal of Neuroscience
Volume30
Issue number28
DOIs
StatePublished - Jul 14 2010
Externally publishedYes

ASJC Scopus subject areas

  • Neuroscience(all)

Fingerprint

Dive into the research topics of 'Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local β-actin synthesis and growth cone turning'. Together they form a unique fingerprint.

Cite this