Phase to amplitude coupling as a potential biomarker for creative ideation: An EEG study

Mina Marmpena, Stavros I. Dimitriadis, Nitish Thakor, Anastasios Bezerianos

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The most consistent finding of creative ideation in the neuroscientific study of creativity is the increment of EEG α power. However, the majority of existing studies focused only on ERP experimental paradigms while only a few analyzed time-related changes of EEG α power patterns during the time unlocked creation of ideas. Here, we designed an experimental paradigm where the participants were asked to generate alternative uses of everyday objects (AU task). For the control task, we adopted an Object Characteristics (OC) task, for which participants were asked to list typical characteristics or properties of an object. We estimated relative power spectrum, global efficiency from brain networks constructed with the imaginary part of coherence and phase-to-amplitude coupling (PAC) as potential biomarkers of creativity. Both relative power spectrum and nodal global efficiency failed to reach significant level by comparing AU with OC. In contrast, statistically significant differences between AU and OC were detected with PAC estimated within sensors in frequency pairs θ-γ and α2-γ. Our results can be the ground for both detecting and designing a connectomic biomarker of creativity.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages383-386
Number of pages4
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
CountryUnited States
CityOrlando
Period8/16/168/20/16

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Phase to amplitude coupling as a potential biomarker for creative ideation: An EEG study'. Together they form a unique fingerprint.

Cite this