Patient geometry-driven information retrieval for IMRT treatment plan quality control

Binbin Wu, Francesco Ricchetti, Giuseppe Sanguineti, Misha Kazhdan, Patricio Simari, Ming Chuang, Russell H Taylor, Robert Jacques, Todd McNutt

Research output: Contribution to journalArticle

Abstract

Purpose: Intensity modulated radiation therapy (IMRT) treatment plan quality depends on the planner's level of experience and the amount of time the planner invests in developing the plan. Planners often unwittingly accept plans when further sparing of the organs at risk (OARs) is possible. The authors propose a method of IMRT treatment plan quality control that helps planners to evaluate the doses of the OARs upon completion of a new plan. Methods: It is achieved by comparing the geometric configurations of the OARs and targets of a new patient with those of prior patients, whose plans are maintained in a database. They introduce the concept of a shape relationship descriptor and, specifically, the overlap volume histogram (OVH) to describe the spatial configuration of an OAR with respect to a target. The OVH provides a way to infer the likely DVHs of the OARs by comparing the relative spatial configurations between patients. A database of prior patients is built to serve as an external reference. At the conclusion of a new plan, planners search through the database and identify related patients by comparing the OAR-target geometric relationships of the new patient with those of prior patients. The treatment plans of these related patients are retrieved from the database and guide planners in determining whether lower doses delivered to the OARs in the new plan are feasible. Results: Preliminary evaluation is promising. In this evaluation, they applied the analysis to the parotid DVHs of 32 prior head-and-neck patients, whose plans are maintained in a database. Each parotid was queried against the other 63 parotids to determine whether a lower dose was possible. The 17 parotids that promised the greatest reduction in D50 (DVH dose at 50% volume) were flagged. These 17 parotids came from 13 patients. The method also indicated that the doses of the other nine parotids of the 13 patients could not be reduced, so they were included in the replanning process as controls. Replanning with an effort to reduce D50 was conducted on these 26 parotids. After replanning, the average reductions for D50 of the 17 flagged parotids and nine unflagged parotids were 6.6 and 1.9 Gy, respectively. These results demonstrate that the quality control method has accurately identified not only the parotids that require dose reductions but also those for which dose reductions are marginal. Originally, 11 of out the 17 flagged parotids did not meet the Radiation Therapy Oncology Group sparing goal of V (30 Gy)

Original languageEnglish (US)
Pages (from-to)5497-5505
Number of pages9
JournalMedical Physics
Volume36
Issue number12
DOIs
StatePublished - 2009

Fingerprint

Information Storage and Retrieval
Quality Control
Organs at Risk
Radiotherapy
Databases
Therapeutics
Radiation Oncology
Neck
Head

Keywords

  • Database
  • IMRT
  • OVH
  • Quality control
  • Shape relationship descriptor

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

Wu, B., Ricchetti, F., Sanguineti, G., Kazhdan, M., Simari, P., Chuang, M., ... McNutt, T. (2009). Patient geometry-driven information retrieval for IMRT treatment plan quality control. Medical Physics, 36(12), 5497-5505. https://doi.org/10.1118/1.3253464

Patient geometry-driven information retrieval for IMRT treatment plan quality control. / Wu, Binbin; Ricchetti, Francesco; Sanguineti, Giuseppe; Kazhdan, Misha; Simari, Patricio; Chuang, Ming; Taylor, Russell H; Jacques, Robert; McNutt, Todd.

In: Medical Physics, Vol. 36, No. 12, 2009, p. 5497-5505.

Research output: Contribution to journalArticle

Wu, B, Ricchetti, F, Sanguineti, G, Kazhdan, M, Simari, P, Chuang, M, Taylor, RH, Jacques, R & McNutt, T 2009, 'Patient geometry-driven information retrieval for IMRT treatment plan quality control', Medical Physics, vol. 36, no. 12, pp. 5497-5505. https://doi.org/10.1118/1.3253464
Wu B, Ricchetti F, Sanguineti G, Kazhdan M, Simari P, Chuang M et al. Patient geometry-driven information retrieval for IMRT treatment plan quality control. Medical Physics. 2009;36(12):5497-5505. https://doi.org/10.1118/1.3253464
Wu, Binbin ; Ricchetti, Francesco ; Sanguineti, Giuseppe ; Kazhdan, Misha ; Simari, Patricio ; Chuang, Ming ; Taylor, Russell H ; Jacques, Robert ; McNutt, Todd. / Patient geometry-driven information retrieval for IMRT treatment plan quality control. In: Medical Physics. 2009 ; Vol. 36, No. 12. pp. 5497-5505.
@article{ef049b1df6ab46dd819d4292fd6701a4,
title = "Patient geometry-driven information retrieval for IMRT treatment plan quality control",
abstract = "Purpose: Intensity modulated radiation therapy (IMRT) treatment plan quality depends on the planner's level of experience and the amount of time the planner invests in developing the plan. Planners often unwittingly accept plans when further sparing of the organs at risk (OARs) is possible. The authors propose a method of IMRT treatment plan quality control that helps planners to evaluate the doses of the OARs upon completion of a new plan. Methods: It is achieved by comparing the geometric configurations of the OARs and targets of a new patient with those of prior patients, whose plans are maintained in a database. They introduce the concept of a shape relationship descriptor and, specifically, the overlap volume histogram (OVH) to describe the spatial configuration of an OAR with respect to a target. The OVH provides a way to infer the likely DVHs of the OARs by comparing the relative spatial configurations between patients. A database of prior patients is built to serve as an external reference. At the conclusion of a new plan, planners search through the database and identify related patients by comparing the OAR-target geometric relationships of the new patient with those of prior patients. The treatment plans of these related patients are retrieved from the database and guide planners in determining whether lower doses delivered to the OARs in the new plan are feasible. Results: Preliminary evaluation is promising. In this evaluation, they applied the analysis to the parotid DVHs of 32 prior head-and-neck patients, whose plans are maintained in a database. Each parotid was queried against the other 63 parotids to determine whether a lower dose was possible. The 17 parotids that promised the greatest reduction in D50 (DVH dose at 50{\%} volume) were flagged. These 17 parotids came from 13 patients. The method also indicated that the doses of the other nine parotids of the 13 patients could not be reduced, so they were included in the replanning process as controls. Replanning with an effort to reduce D50 was conducted on these 26 parotids. After replanning, the average reductions for D50 of the 17 flagged parotids and nine unflagged parotids were 6.6 and 1.9 Gy, respectively. These results demonstrate that the quality control method has accurately identified not only the parotids that require dose reductions but also those for which dose reductions are marginal. Originally, 11 of out the 17 flagged parotids did not meet the Radiation Therapy Oncology Group sparing goal of V (30 Gy)",
keywords = "Database, IMRT, OVH, Quality control, Shape relationship descriptor",
author = "Binbin Wu and Francesco Ricchetti and Giuseppe Sanguineti and Misha Kazhdan and Patricio Simari and Ming Chuang and Taylor, {Russell H} and Robert Jacques and Todd McNutt",
year = "2009",
doi = "10.1118/1.3253464",
language = "English (US)",
volume = "36",
pages = "5497--5505",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "12",

}

TY - JOUR

T1 - Patient geometry-driven information retrieval for IMRT treatment plan quality control

AU - Wu, Binbin

AU - Ricchetti, Francesco

AU - Sanguineti, Giuseppe

AU - Kazhdan, Misha

AU - Simari, Patricio

AU - Chuang, Ming

AU - Taylor, Russell H

AU - Jacques, Robert

AU - McNutt, Todd

PY - 2009

Y1 - 2009

N2 - Purpose: Intensity modulated radiation therapy (IMRT) treatment plan quality depends on the planner's level of experience and the amount of time the planner invests in developing the plan. Planners often unwittingly accept plans when further sparing of the organs at risk (OARs) is possible. The authors propose a method of IMRT treatment plan quality control that helps planners to evaluate the doses of the OARs upon completion of a new plan. Methods: It is achieved by comparing the geometric configurations of the OARs and targets of a new patient with those of prior patients, whose plans are maintained in a database. They introduce the concept of a shape relationship descriptor and, specifically, the overlap volume histogram (OVH) to describe the spatial configuration of an OAR with respect to a target. The OVH provides a way to infer the likely DVHs of the OARs by comparing the relative spatial configurations between patients. A database of prior patients is built to serve as an external reference. At the conclusion of a new plan, planners search through the database and identify related patients by comparing the OAR-target geometric relationships of the new patient with those of prior patients. The treatment plans of these related patients are retrieved from the database and guide planners in determining whether lower doses delivered to the OARs in the new plan are feasible. Results: Preliminary evaluation is promising. In this evaluation, they applied the analysis to the parotid DVHs of 32 prior head-and-neck patients, whose plans are maintained in a database. Each parotid was queried against the other 63 parotids to determine whether a lower dose was possible. The 17 parotids that promised the greatest reduction in D50 (DVH dose at 50% volume) were flagged. These 17 parotids came from 13 patients. The method also indicated that the doses of the other nine parotids of the 13 patients could not be reduced, so they were included in the replanning process as controls. Replanning with an effort to reduce D50 was conducted on these 26 parotids. After replanning, the average reductions for D50 of the 17 flagged parotids and nine unflagged parotids were 6.6 and 1.9 Gy, respectively. These results demonstrate that the quality control method has accurately identified not only the parotids that require dose reductions but also those for which dose reductions are marginal. Originally, 11 of out the 17 flagged parotids did not meet the Radiation Therapy Oncology Group sparing goal of V (30 Gy)

AB - Purpose: Intensity modulated radiation therapy (IMRT) treatment plan quality depends on the planner's level of experience and the amount of time the planner invests in developing the plan. Planners often unwittingly accept plans when further sparing of the organs at risk (OARs) is possible. The authors propose a method of IMRT treatment plan quality control that helps planners to evaluate the doses of the OARs upon completion of a new plan. Methods: It is achieved by comparing the geometric configurations of the OARs and targets of a new patient with those of prior patients, whose plans are maintained in a database. They introduce the concept of a shape relationship descriptor and, specifically, the overlap volume histogram (OVH) to describe the spatial configuration of an OAR with respect to a target. The OVH provides a way to infer the likely DVHs of the OARs by comparing the relative spatial configurations between patients. A database of prior patients is built to serve as an external reference. At the conclusion of a new plan, planners search through the database and identify related patients by comparing the OAR-target geometric relationships of the new patient with those of prior patients. The treatment plans of these related patients are retrieved from the database and guide planners in determining whether lower doses delivered to the OARs in the new plan are feasible. Results: Preliminary evaluation is promising. In this evaluation, they applied the analysis to the parotid DVHs of 32 prior head-and-neck patients, whose plans are maintained in a database. Each parotid was queried against the other 63 parotids to determine whether a lower dose was possible. The 17 parotids that promised the greatest reduction in D50 (DVH dose at 50% volume) were flagged. These 17 parotids came from 13 patients. The method also indicated that the doses of the other nine parotids of the 13 patients could not be reduced, so they were included in the replanning process as controls. Replanning with an effort to reduce D50 was conducted on these 26 parotids. After replanning, the average reductions for D50 of the 17 flagged parotids and nine unflagged parotids were 6.6 and 1.9 Gy, respectively. These results demonstrate that the quality control method has accurately identified not only the parotids that require dose reductions but also those for which dose reductions are marginal. Originally, 11 of out the 17 flagged parotids did not meet the Radiation Therapy Oncology Group sparing goal of V (30 Gy)

KW - Database

KW - IMRT

KW - OVH

KW - Quality control

KW - Shape relationship descriptor

UR - http://www.scopus.com/inward/record.url?scp=72049104417&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=72049104417&partnerID=8YFLogxK

U2 - 10.1118/1.3253464

DO - 10.1118/1.3253464

M3 - Article

C2 - 20095262

AN - SCOPUS:72049104417

VL - 36

SP - 5497

EP - 5505

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 12

ER -