Passive electrical cable properties and synaptic excitation of tiger salamander retinal ganglion cells

W. Rowland Taylor, Scott Harvey Mittman, David R. Copenhagen

Research output: Contribution to journalArticle

Abstract

The passive electrical properties of 17 ON-OFF retinal ganglion cells were derived from electrophysiological recordings. The parameters for each cells' equivalent model were obtained from the transient current responses to small step changes in clamp potential. Thirteen of the cells could be adequately approximated by a spherical soma connected to an equivalent dendritic cable. Estimates for the cell input conductance (GN), membrane time constant (τm), the dendritic-to-soma conductance ratio (ρ), and the normalized electrotonic length (L) were obtained (mean ± standard deviation, n = 13): GN = 580 ± 530 pS, τm = 91 ± 72 ms, ρ = 2.8 ± 2.8, and L = 0.34 ± 0.13. Series resistance averaged 32 ± 11 MΩ. The mean of the derived soma diameters was 18 ± 6 μm and the mean diameter and length of the equivalent cables were 1.4 ± 0.6 and 470 ± 90 μm, respectively. The average of the specific membrane conductances, 1.67 ± 1.08 S/cm2, corresponded to a membrane resistivity of 60 kΩ·cm2. Computer simulations of synaptic inputs were performed on a representative model, with an electrode at the soma and using the worst-case configuration, in which all synaptic inputs were confined to the tips of the dendrites. We draw three conclusions from the modeling: (1) Under voltage clamp, fast, spontaneous EPSCs would be significantly attenuated and slowed while the time course of the slower, light-evoked non-NMDA and NMDA EPSCs would be minimally distorted by dendritic filtering. (2) Excitatory synaptic reversal potentials can be accurately determined under voltage clamp. (3) In the absence of GABAergic and glycinergic inhibition, the efficacy at the soma of excitatory conductance changes is essentially independent of their dendritic location. The specific membrane resistivity appears to represent a good compromise between having a small membrane time constant and minimal EPSP attenuation.

Original languageEnglish (US)
Pages (from-to)979-990
Number of pages12
JournalVisual Neuroscience
Volume13
Issue number5
StatePublished - Sep 1996

Fingerprint

Ambystoma
Retinal Ganglion Cells
Carisoprodol
Membranes
Synaptic Potentials
Excitatory Postsynaptic Potentials
N-Methylaspartate
Dendrites
Computer Simulation
Electrodes
Light

Keywords

  • Dendrite
  • EPSC
  • Filtering
  • NMDA
  • Passive electrotonic properties

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Passive electrical cable properties and synaptic excitation of tiger salamander retinal ganglion cells. / Taylor, W. Rowland; Mittman, Scott Harvey; Copenhagen, David R.

In: Visual Neuroscience, Vol. 13, No. 5, 09.1996, p. 979-990.

Research output: Contribution to journalArticle

@article{246790db8bd14ad79a33623106a9f100,
title = "Passive electrical cable properties and synaptic excitation of tiger salamander retinal ganglion cells",
abstract = "The passive electrical properties of 17 ON-OFF retinal ganglion cells were derived from electrophysiological recordings. The parameters for each cells' equivalent model were obtained from the transient current responses to small step changes in clamp potential. Thirteen of the cells could be adequately approximated by a spherical soma connected to an equivalent dendritic cable. Estimates for the cell input conductance (GN), membrane time constant (τm), the dendritic-to-soma conductance ratio (ρ), and the normalized electrotonic length (L) were obtained (mean ± standard deviation, n = 13): GN = 580 ± 530 pS, τm = 91 ± 72 ms, ρ = 2.8 ± 2.8, and L = 0.34 ± 0.13. Series resistance averaged 32 ± 11 MΩ. The mean of the derived soma diameters was 18 ± 6 μm and the mean diameter and length of the equivalent cables were 1.4 ± 0.6 and 470 ± 90 μm, respectively. The average of the specific membrane conductances, 1.67 ± 1.08 S/cm2, corresponded to a membrane resistivity of 60 kΩ·cm2. Computer simulations of synaptic inputs were performed on a representative model, with an electrode at the soma and using the worst-case configuration, in which all synaptic inputs were confined to the tips of the dendrites. We draw three conclusions from the modeling: (1) Under voltage clamp, fast, spontaneous EPSCs would be significantly attenuated and slowed while the time course of the slower, light-evoked non-NMDA and NMDA EPSCs would be minimally distorted by dendritic filtering. (2) Excitatory synaptic reversal potentials can be accurately determined under voltage clamp. (3) In the absence of GABAergic and glycinergic inhibition, the efficacy at the soma of excitatory conductance changes is essentially independent of their dendritic location. The specific membrane resistivity appears to represent a good compromise between having a small membrane time constant and minimal EPSP attenuation.",
keywords = "Dendrite, EPSC, Filtering, NMDA, Passive electrotonic properties",
author = "Taylor, {W. Rowland} and Mittman, {Scott Harvey} and Copenhagen, {David R.}",
year = "1996",
month = "9",
language = "English (US)",
volume = "13",
pages = "979--990",
journal = "Visual Neuroscience",
issn = "0952-5238",
publisher = "Cambridge University Press",
number = "5",

}

TY - JOUR

T1 - Passive electrical cable properties and synaptic excitation of tiger salamander retinal ganglion cells

AU - Taylor, W. Rowland

AU - Mittman, Scott Harvey

AU - Copenhagen, David R.

PY - 1996/9

Y1 - 1996/9

N2 - The passive electrical properties of 17 ON-OFF retinal ganglion cells were derived from electrophysiological recordings. The parameters for each cells' equivalent model were obtained from the transient current responses to small step changes in clamp potential. Thirteen of the cells could be adequately approximated by a spherical soma connected to an equivalent dendritic cable. Estimates for the cell input conductance (GN), membrane time constant (τm), the dendritic-to-soma conductance ratio (ρ), and the normalized electrotonic length (L) were obtained (mean ± standard deviation, n = 13): GN = 580 ± 530 pS, τm = 91 ± 72 ms, ρ = 2.8 ± 2.8, and L = 0.34 ± 0.13. Series resistance averaged 32 ± 11 MΩ. The mean of the derived soma diameters was 18 ± 6 μm and the mean diameter and length of the equivalent cables were 1.4 ± 0.6 and 470 ± 90 μm, respectively. The average of the specific membrane conductances, 1.67 ± 1.08 S/cm2, corresponded to a membrane resistivity of 60 kΩ·cm2. Computer simulations of synaptic inputs were performed on a representative model, with an electrode at the soma and using the worst-case configuration, in which all synaptic inputs were confined to the tips of the dendrites. We draw three conclusions from the modeling: (1) Under voltage clamp, fast, spontaneous EPSCs would be significantly attenuated and slowed while the time course of the slower, light-evoked non-NMDA and NMDA EPSCs would be minimally distorted by dendritic filtering. (2) Excitatory synaptic reversal potentials can be accurately determined under voltage clamp. (3) In the absence of GABAergic and glycinergic inhibition, the efficacy at the soma of excitatory conductance changes is essentially independent of their dendritic location. The specific membrane resistivity appears to represent a good compromise between having a small membrane time constant and minimal EPSP attenuation.

AB - The passive electrical properties of 17 ON-OFF retinal ganglion cells were derived from electrophysiological recordings. The parameters for each cells' equivalent model were obtained from the transient current responses to small step changes in clamp potential. Thirteen of the cells could be adequately approximated by a spherical soma connected to an equivalent dendritic cable. Estimates for the cell input conductance (GN), membrane time constant (τm), the dendritic-to-soma conductance ratio (ρ), and the normalized electrotonic length (L) were obtained (mean ± standard deviation, n = 13): GN = 580 ± 530 pS, τm = 91 ± 72 ms, ρ = 2.8 ± 2.8, and L = 0.34 ± 0.13. Series resistance averaged 32 ± 11 MΩ. The mean of the derived soma diameters was 18 ± 6 μm and the mean diameter and length of the equivalent cables were 1.4 ± 0.6 and 470 ± 90 μm, respectively. The average of the specific membrane conductances, 1.67 ± 1.08 S/cm2, corresponded to a membrane resistivity of 60 kΩ·cm2. Computer simulations of synaptic inputs were performed on a representative model, with an electrode at the soma and using the worst-case configuration, in which all synaptic inputs were confined to the tips of the dendrites. We draw three conclusions from the modeling: (1) Under voltage clamp, fast, spontaneous EPSCs would be significantly attenuated and slowed while the time course of the slower, light-evoked non-NMDA and NMDA EPSCs would be minimally distorted by dendritic filtering. (2) Excitatory synaptic reversal potentials can be accurately determined under voltage clamp. (3) In the absence of GABAergic and glycinergic inhibition, the efficacy at the soma of excitatory conductance changes is essentially independent of their dendritic location. The specific membrane resistivity appears to represent a good compromise between having a small membrane time constant and minimal EPSP attenuation.

KW - Dendrite

KW - EPSC

KW - Filtering

KW - NMDA

KW - Passive electrotonic properties

UR - http://www.scopus.com/inward/record.url?scp=0030229237&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030229237&partnerID=8YFLogxK

M3 - Article

VL - 13

SP - 979

EP - 990

JO - Visual Neuroscience

JF - Visual Neuroscience

SN - 0952-5238

IS - 5

ER -