Papillomavirus capsid mutation to escape dendritic cell-dependent innate immunity in cervical cancer

Rongcun Yang, Cosette M. Wheeler, Xiaojiang Chen, Satoshi Uematsu, Kiyoshi Takeda, Shizuo Akira, Diana V. Pastrana, Raphael P. Viscidi, Richard B.S. Roden

Research output: Contribution to journalArticle

Abstract

Infection with oncogenic human papillomaviruses (HPVs), typified by HPV type 16 (HPV16), is a necessary cause of cervical cancer. Prophylactic vaccination with HPV16 L1 virus-like particles (VLPs) provides immunity. HPV16 VLPs activate dendritic cells and a potent neutralizing immunoglobulin G (IgG) response, yet many cervical cancer patients fail to generate detectable VLP-specific IgG. Therefore, we examined the role of the innate recognition of HPV16 L1 in VLP-induced immune responses and its evasion during carcinogenesis. Nonconservative mutations within HPV16 L1 have been described in isolates from cervical cancer and its precursor, high-grade cervical intraepithelial neoplasia (CIN). We determined the effect of mutations in L1 upon in vitro self-assembly into VLPs and their influence upon the induction of innate and adaptive immune responses in mice. Several nonconservative mutations in HPV16 L1 isolated from high-grade CIN or cervical carcinoma prevent self-assembly of L1 VLPs. Intact VLPs, but not assembly-defective L1, activate dendritic cells to produce proinflammatory factors, such as alpha interferon, that play a critical role in inducing adaptive immunity. Indeed, effective induction of L1-specific IgG1 and IgG2a was dependent upon intact VLP structure. Dendritic cell activation and production of virus-specific neutralizing IgG by VLPs requires MyD88-dependent signaling, although the L1 structure that initiates MyD88-mediated signaling is distinct from the neutralizing epitopes. We conclude that innate recognition of the intact L1 VLP structure via MyD88 is critical in the induction of high-titer neutralizing IgG. Tumor progression is associated with genetic instability and L1 mutants. Selection for assembly-deficient L1 mutations suggests the evasion of MyD88-dependent immune control during cervical carcinogenesis.

Original languageEnglish (US)
Pages (from-to)6741-6750
Number of pages10
JournalJournal of virology
Volume79
Issue number11
DOIs
StatePublished - Jun 1 2005

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Papillomavirus capsid mutation to escape dendritic cell-dependent innate immunity in cervical cancer'. Together they form a unique fingerprint.

  • Cite this