TY - JOUR
T1 - Oxidized low density lipoproteins induce a pathologic response by retinal pigmented epithelial cells
AU - Yamada, Yuko
AU - Tian, Jane
AU - Yang, Yanqin
AU - Cutler, Roy G.
AU - Wu, Tinghuai
AU - Telljohann, Richard S.
AU - Mattson, Mark P.
AU - Handa, James T.
PY - 2008/5
Y1 - 2008/5
N2 - The accumulation of apolipoprotein B100 lipoproteins in Bruch membrane is an early event thought to promote age-related macular degeneration (AMD). Immunohistochemistry using an anti-oxidized low density lipoprotein antibody on 10 AMD specimens showed staining in Bruch membrane including basal deposits, a marker of AMD. To determine whether retinal pigmented epithelial cells develop a pathologic phenotype after interaction with lipoproteins, ARPE-19 cells were exposed to low density lipoproteins (LDL) or oxidized LDLs (oxLDL). Analysis using the Affymetrix U133 Plus 2.0 (Affymetrix, Inc., Santa Clara, CA, USA) gene chip showed physiological and pathological transcriptional responses after LDL and oxLDL treatment, respectively. LDL induced a down-regulation of cholesterol biosynthesis genes while oxLDL induced transcriptional alterations in genes related to lipid metabolism, oxidative stress, inflammation and apoptosis. Electrospray mass spectrometry showed that oxLDL, but not LDL induced large cellular increases of sphingomyelin, ceramides, and cholesteryl esters. With TUNEL labeling, oxLDL caused 14.6% apoptosis compared to <1% after LDL. Addition of an inhibitor of sphingomyelin synthase inhibited this apoptosis by 41%. These data support the hypothesis that oxidized lipoproteins are one trigger for initiating early events in the pathogenesis of AMD.
AB - The accumulation of apolipoprotein B100 lipoproteins in Bruch membrane is an early event thought to promote age-related macular degeneration (AMD). Immunohistochemistry using an anti-oxidized low density lipoprotein antibody on 10 AMD specimens showed staining in Bruch membrane including basal deposits, a marker of AMD. To determine whether retinal pigmented epithelial cells develop a pathologic phenotype after interaction with lipoproteins, ARPE-19 cells were exposed to low density lipoproteins (LDL) or oxidized LDLs (oxLDL). Analysis using the Affymetrix U133 Plus 2.0 (Affymetrix, Inc., Santa Clara, CA, USA) gene chip showed physiological and pathological transcriptional responses after LDL and oxLDL treatment, respectively. LDL induced a down-regulation of cholesterol biosynthesis genes while oxLDL induced transcriptional alterations in genes related to lipid metabolism, oxidative stress, inflammation and apoptosis. Electrospray mass spectrometry showed that oxLDL, but not LDL induced large cellular increases of sphingomyelin, ceramides, and cholesteryl esters. With TUNEL labeling, oxLDL caused 14.6% apoptosis compared to <1% after LDL. Addition of an inhibitor of sphingomyelin synthase inhibited this apoptosis by 41%. These data support the hypothesis that oxidized lipoproteins are one trigger for initiating early events in the pathogenesis of AMD.
KW - Age-related macular degeneration
KW - Apoptosis
KW - Ceramides
KW - Cholesterol
KW - Oxidized low density lipoproteins
KW - Retinal pigmented epithelium
UR - http://www.scopus.com/inward/record.url?scp=42549161012&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=42549161012&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.2008.05211.x
DO - 10.1111/j.1471-4159.2008.05211.x
M3 - Article
C2 - 18182060
AN - SCOPUS:42549161012
VL - 105
SP - 1187
EP - 1197
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
SN - 0022-3042
IS - 4
ER -