Overexpression of human keratin 16 produces a distinct skin phenotype in transgenic mouse skin.

P. A. Coulombe, N. S. Bravo, R. D. Paladini, D. Nguyen, K. Takahashi

Research output: Contribution to journalReview article

Abstract

Human cytokeratin 16 (K16; 48 kDa) is constitutively expressed in postmitotic keratinocytes in a variety of stratified epithelial tissues, but it is best known for the marked enhancement of its expression in stratified squamous epithelia showing hyperproliferation or abnormal differentiation. Of particular interest to us, K16 is strongly induced at the wound edge after injury to the epidermis, and its accumulation correlates spatially and temporally with the onset of reepithelialization. To examine the properties of K16 in its natural cellular context, we introduced a wild-type human K16 gene into the germ line of transgenic mice. Several transgenic lines were established and characterized. Under most conditions, the human K16 transgene is regulated tissue specifically in the skin of transgenic mice. Animals that feature low levels of transgene expression are indistinguishable from controls during the first 6-8 months of life. In contrast, transgenic animals expressing the transgene at higher levels develop skin lesions at 1 week after birth, coinciding with the emergence of fur. At a cellular level, alterations begin with the reorganization of keratin filaments and are first seen at the level of the hair follicle outer root sheath (ORS), where K16 expression is known to occur constitutively. The lesions then progressively spread to involve the proximal epidermis, with which the ORS is contiguous. Elevated transgene expression is associated with a marked thickening of these two epithelia, along with altered keratinocyte cytoarchitecture and aberrant keratinization but no keratinocyte lysis. The implications of this phenotype for epithelial differentiation, human genodermatoses, and wound healing in skin are discussed.

Original languageEnglish (US)
Pages (from-to)611-618
Number of pages8
JournalBiochemistry and cell biology = Biochimie et biologie cellulaire
Volume73
Issue number9-10
DOIs
StatePublished - Jan 1 1995

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this