Optimization of MR protocols: A statistical decision analysis approach

E. R. McVeigh, M. J. Bronskill, R. M. Henkelman

Research output: Contribution to journalArticlepeer-review

Abstract

A new method of optimizing MRI data acquisition protocols is presented. Tissues are modeled with probability density functions (PDFs) of tissue parameter values (such as T1, T2). The imaging data acquisition process is modeled as a mapping from a tissue parameter space to a signal strength space. Tissue parameter PDFs are mapped to signal strength PDFs for each tissue in a clinical problem. The efficacy of an MRI protocol is evaluated using the methods of statical decision analysis applied to the signal strength PDFs, including the propagation of noise. This procedure evaluates the ability to discriminate different tissues based on the signal strengths produced with the protocol. The model can incorporate an arbitrary number of tissues, parameters, and pulse sequences in the protocol. The multivariate nature of MRI and the observed broad distribution of tissue parameter values makes this model more appropriate for optimizing data acquisition protocols than methods which maximize the signal-difference-to-noise ratio between discrete values of the tissue parameters. It is shown that these two methods may calculate different optimal protocols. The method can be used to optimize data acquisition for quantitative computer-based tissue classification, as well as imaging. Data acquisition and image processing philosophies are discussed in light of the method.

Original languageEnglish (US)
Pages (from-to)314-333
Number of pages20
JournalMagnetic Resonance in Medicine
Volume6
Issue number3
StatePublished - 1988
Externally publishedYes

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Radiological and Ultrasound Technology

Fingerprint

Dive into the research topics of 'Optimization of MR protocols: A statistical decision analysis approach'. Together they form a unique fingerprint.

Cite this