Old dog, new tricks: Novel cardiac targets and stress regulation by protein kinase G

Peter P. Rainer, David A. Kass

Research output: Contribution to journalReview articlepeer-review

29 Scopus citations

Abstract

The second messenger cyclic guanosine 3′5′ monophosphate (cGMP) and its downstream effector protein kinase G (PKG) have been discovered more than 40 years ago. In vessels, PKG1 induces smooth muscle relaxation in response to nitric oxide signalling and thus lowers systemic and pulmonary blood pressure. In platelets, PKG1 stimulation by cGMP inhibits activation and aggregation, and in experimental models of heart failure (HF), PKG1 activation by inhibiting cGMP degradation is protective. The net effect of the above-mentioned signalling is cardiovascular protection. Yet, while modulation of cGMP-PKG has entered clinical practice for treating pulmonary hypertension or erectile dysfunction, translation of promising studies in experimental HF to clinical success has failed thus far.With the advent of new technologies, novel mechanisms of PKG regulation, including mechanosensing, redox regulation, protein quality control, and cGMP degradation, have been discovered. These novel, non-canonical roles of PKG1 may help understand why clinical translation has disappointed thus far. Addressing them appears to be a requisite for future, successful translation of experimental studies to the clinical arena.

Original languageEnglish (US)
Pages (from-to)154-162
Number of pages9
JournalCardiovascular research
Volume111
Issue number2
DOIs
StatePublished - Jul 15 2016

Keywords

  • CGMP-dependent protein kinase type 1
  • Cardiac mechanosensing
  • Phosphodiesterase
  • Proteasome
  • Protein kinase G
  • Redox regulation

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Old dog, new tricks: Novel cardiac targets and stress regulation by protein kinase G'. Together they form a unique fingerprint.

Cite this