Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung

Hironori Satoh, Takashi Moriguchi, Keiko Taguchi, Jun Takai, Jonathan M. Maher, Takafumi Suzuki, Paul T. Winnard, Venu Raman, Masahito Ebina, Toshihiro Nukiwa, Masayuki Yamamoto

Research output: Contribution to journalArticlepeer-review

Abstract

The Nrf2 transcription factor is crucial for regulating the cellular defense against various carcinogens. However, relationship between host Nrf2 and cancer metastasis remains unexplored. To address this issue, we examined susceptibility of Nrf2-deficient mice to pulmonary cancer metastasis following implantation of the mouse Lewis lung carcinoma (3LL) cell line. Nrf2-deficient mice reproducibly exhibited a higher number of pulmonary metastatic nodules than wild-type mice did. The lung and bone marrow (BM) of cancer-bearing Nrf2-deficient mice contained increased numbers of inflammatory cells, including myeloid-derived suppressor cells (MDSCs), a potent population of immunosuppressive cells. MDSCs can attenuate CD8+ T-cell immunity through modification of the T-cell receptor complex exploiting reactive oxygen species (ROS). MDSCs of Nrf2-deficient mice retained elevated levels of ROS relative to wild-type mice. BM transplantation experiments revealed functional disturbance in the hematopoietic and immune systems of Nrf2-deficient mice. Wild-type recipient mice with Nrf2-deficient BM cells showed increased levels of lung metastasis after cancer cell inoculation. These mice exhibited high-level accumulation of ROS in MDSCs, which showed very good coincidence to the decrease of splenic CD8+ T-cells. In contrast, Keap1-knockdown mutant mice harboring high-level Nrf2 expression displayed increased resistance against the cancer cell metastasis to the lung, accompanied by a decrease in ROS in the MDSCs fraction. Our results thus reveal a novel function for Nrf2 in the prevention of cancer metastasis, presumably by its ability to preserve the redox balance in the hematopoietic and immune systems.

Original languageEnglish (US)
Pages (from-to)1833-1843
Number of pages11
JournalCarcinogenesis
Volume31
Issue number10
DOIs
StatePublished - May 31 2010

ASJC Scopus subject areas

  • Cancer Research

Fingerprint

Dive into the research topics of 'Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung'. Together they form a unique fingerprint.

Cite this