NOTCH1 PEST domain variants are responsive to standard of care treatments despite distinct transformative properties in a breast cancer model

Karen Cravero, Morgan V. Pantone, Dong Ho Shin, Riley Bergman, Rory Cochran, David Chu, Daniel J. Zabransky, Swathi Karthikeyan, Ian G. Waters, Natasha Hunter, D. Marc Rosen, Kelly Kyker-Snowman, W. Brian Dalton, Berry Button, Dan Shinn, Hong Yuen Wong, Joshua Donaldson, Paula Hurley, Sarah Croessmann, Ben Ho Park

Research output: Contribution to journalArticlepeer-review

Abstract

Activating variants in the PEST region of NOTCH1 have been associated with aggressive phenotypes in human cancers, including triple-negative breast cancer (TNBC). Previous studies suggested that PEST domain variants in TNBC patients resulted in increased cell proliferation, invasiveness, and decreased overall survival. In this study, we assess the phenotypic transformation of activating NOTCH1 variants and their response to standard of care therapies. AAV-mediated gene targeting was used to isogenically incorporate 3 NOTCH1 variants, including a novel TNBC frameshift variant, in two non-tumorigenic breast epithelial cell lines, MCF10A and hTERT-IMEC. Two different variants at the NOTCH1 A2241 site (A2441fs and A2441T) both demonstrated increased transformative properties when compared to a non-transformative PEST domain variant (S2523L). These phenotypic changes include proliferation, migration, anchorage-independent growth, and MAPK pathway activation. In contrast to previous studies, activating NOTCH1 variants did not display sensitivity to a gamma secretase inhibitor (GSI) or resistance to chemotherapies. This study demonstrates distinct transformative phenotypes are specific to a given variant within NOTCH1 and these phenotypes do not correlate with sensitivities or resistance to chemotherapies or GSIs. Although previous studies have suggested NOTCH1 variants may be prognostic for TNBC, our study does not demonstrate prognostic ability of these variants and suggests further characterization would be required for clinical applications.

Original languageEnglish (US)
Pages (from-to)373-386
Number of pages14
JournalOncotarget
Volume13
DOIs
StatePublished - 2022

Keywords

  • Breast cancer
  • NOTCH1
  • PEST
  • TNBC

ASJC Scopus subject areas

  • Oncology

Fingerprint

Dive into the research topics of 'NOTCH1 PEST domain variants are responsive to standard of care treatments despite distinct transformative properties in a breast cancer model'. Together they form a unique fingerprint.

Cite this