Noninvasive thermal coagulation of deep subsurface tissue structures using a laser probe with integrated contact cooling

Christopher M. Cilip, Nicholas J. Scott, Susan R. Trammell, Nathaniel M. Fried

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Cooling methods are used during cosmetic laser surgery to preserve a superficial layer of the skin surface. This study investigates contact cooling for sparing a deeper layer of the tissue surface during laser irradiation of subsurface tissues, with the goal of developing noninvasive laser therapy applications beyond cosmetic surgery. A laser probe was designed and tested for simultaneous laser irradiation and contact cooling of liver tissue, ex vivo. Gross and histologic examination was used to quantify thermal lesion dimensions. Liver lesions of 5.8-mm-diameter were created, while preserving the tissue surface to a depth of 1.5 mm. In vivo animal studies are planned to optimize the laser and cooling parameters for potential clinical applications.

Original languageEnglish (US)
Title of host publicationProceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - "Personalized Healthcare through Technology"
Pages3657-3660
Number of pages4
StatePublished - 2008
Externally publishedYes
Event30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - Vancouver, BC, Canada
Duration: Aug 20 2008Aug 25 2008

Other

Other30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08
Country/TerritoryCanada
CityVancouver, BC
Period8/20/088/25/08

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Noninvasive thermal coagulation of deep subsurface tissue structures using a laser probe with integrated contact cooling'. Together they form a unique fingerprint.

Cite this