Nonholonomic catheter path reconstruction using electromagnetic tracking

Elodie Lugez, Hossein Sadjadi, Selim G. Akl, Gabor Fichtinger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Purpose: Catheter path reconstruction is a necessary step in many clinical procedures, such as cardiovascular interventions and high-dose-rate brachytherapy. To overcome limitations of standard imaging modalities, electromagnetic tracking has been employed to reconstruct catheter paths. However, tracking errors pose a challenge in accurate path reconstructions. We address this challenge by means of a filtering technique incorporating the electromagnetic measurements with the nonholonomic motion constraints of the sensor inside a catheter. Methods: The nonholonomic motion model of the sensor within the catheter and the electromagnetic measurement data were integrated using an extended Kalman filter. The performance of our proposed approach was experimentally evaluated using the Ascension's 3D Guidance trakStar electromagnetic tracker. Sensor measurements were recorded during insertions of an electromagnetic sensor (model 55) along ten predefined ground truth paths. Our method was implemented in MATLAB and applied to the measurement data. Our reconstruction results were compared to raw measurements as well as filtered measurements provided by the manufacturer. Results: The mean of the root-mean-square (RMS) errors along the ten paths was 3.7 mm for the raw measurements, and 3.3 mm with manufacturer's filters. Our approach effectively reduced the mean RMS error to 2.7 mm. Conclusion: Compared to other filtering methods, our approach successfully improved the path reconstruction accuracy by exploiting the sensor's nonholonomic motion constraints in its formulation. Our approach seems promising for a variety of clinical procedures involving reconstruction of a catheter path.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling
PublisherSPIE
Volume9415
ISBN (Print)9781628415056
DOIs
StatePublished - 2015
Externally publishedYes
EventMedical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling - Orlando, United States
Duration: Feb 22 2015Feb 24 2015

Other

OtherMedical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling
Country/TerritoryUnited States
CityOrlando
Period2/22/152/24/15

Keywords

  • Catheter path reconstruction
  • Electromagnetic tracking
  • Kalman filtering
  • Nonholonomic motion

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Nonholonomic catheter path reconstruction using electromagnetic tracking'. Together they form a unique fingerprint.

Cite this