Non-viral gene delivery of HIF-1α promotes angiogenesis in human adipose-derived stem cells

Savannah E. Est-Witte, Ashley L. Farris, Stephany Y. Tzeng, Daphne L. Hutton, Dennis H. Gong, Kaitlyn G. Calabresi, Warren L. Grayson, Jordan J. Green

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Stable and mature vascular formation is a current challenge in engineering functional tissues. Transient, non-viral gene delivery presents a unique platform for delivering genetic information to cells for tissue engineering purposes and to restore blood flow to ischemic tissue. The formation of new blood vessels can be induced by upregulation of hypoxia-inducible factor-1α (HIF-1), among other factors. We hypothesized that biodegradable polymers could be used to efficiently deliver the HIF-1α gene to human adipose-derived stromal/stem cells (hASCs) and that this treatment could recruit an existing endogenous endothelial cell population to induce angiogenesis in a 3D cell construct in vitro. In this study, end-modified poly(β-amino ester) (PBAE) nanocomplexes were first optimized for transfection of hASCs and a new biodegradable polymer with increased hydrophobicity and secondary amine structures, N'-(3-aminopropyl)-N,N-dimethylpropane-1,3-diamine end-modified poly(1,4-butanediol diacrylate-co-4-amino-1-butanol), was found to be most effective. Optimal PBAE nanocomplexes had a hydrodynamic diameter of approximately 140 nm and had a zeta potential of 30 mV. The PBAE polymer self-assembled with HIF-1α plasmid DNA and treatment of hASCs with these nanocomplexes induced 3D vascularization. Cells transfected with this polymer-DNA complex were found to have 106-fold upregulation HIF-1α expression, an approximately 2-fold increase in secreted VEGF, and caused the formation of vessel tubules compared to an untransfected control. These gene therapy biomaterials may be useful for regenerative medicine. Statement of Significance: Not only is the formation of stable vasculature a challenge for engineering human tissues in vitro, but it is also of valuable interest to clinical applications such as peripheral artery disease. Previous studies using HIF-1α to induce vascular formation have been limited by the necessity of hypoxic chambers. It would be advantageous to simulate endogenous responses to hypoxia without the need for physical hypoxia. In this study, 3D vascular formation was shown to be inducible through non-viral gene delivery of HIF-1α with new polymeric nanocomplexes. A biodegradable polymer N'-(3-aminopropyl)-N,N-dimethylpropane-1,3-diamine end-modified poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) demonstrates improved transfection of human adipose-derived stem cells. This nanobiotechnology could be a promising strategy for the creation of vasculature for tissue engineering and clinical applications.

Original languageEnglish (US)
Pages (from-to)279-288
Number of pages10
JournalActa Biomaterialia
Volume113
DOIs
StatePublished - Sep 1 2020

Keywords

  • Angiogenesis
  • Gene delivery
  • Hypoxia-inducible factor 1
  • Stem cells
  • Tissue engineering

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterials
  • Biochemistry
  • Biomedical Engineering
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Non-viral gene delivery of HIF-1α promotes angiogenesis in human adipose-derived stem cells'. Together they form a unique fingerprint.

Cite this