Non-circular CT orbit design for elimination of metal artifacts

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Metal artifacts are a well-known problem in computed tomography - particularly in interventional imaging where surgical tools and hardware are often found in the field-of-view. An increasing number of interventional imaging systems are capable of non-circular orbits providing one potential avenue to avoid metal artifacts entirely by careful design of the orbital trajectory. In this work, we propose a general design methodology to find complete data solution by applying Tuy’s condition for data completeness. That is, because metal implants effectively cause missing data in projections, we propose to find orbital designs that will not have missing data based on arbitrary placement of metal within the imaging field-of-view. We present the design process for these missing-data-free orbits and evaluate the orbital designs in simulation experiments. The resulting orbits are highly robust to metal objects and show greatly improved visualization of features that are ordinarily obscured.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2020
Subtitle of host publicationPhysics of Medical Imaging
EditorsGuang-Hong Chen, Hilde Bosmans
PublisherSPIE
ISBN (Electronic)9781510633919
DOIs
StatePublished - 2020
EventMedical Imaging 2020: Physics of Medical Imaging - Houston, United States
Duration: Feb 16 2020Feb 19 2020

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11312
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2020: Physics of Medical Imaging
Country/TerritoryUnited States
CityHouston
Period2/16/202/19/20

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Non-circular CT orbit design for elimination of metal artifacts'. Together they form a unique fingerprint.

Cite this