Nociceptin signaling involves a calcium-based depolarization in tetrahymena thermophila

Thomas Lampert, Cheryl Nugent, John Weston, Nathanael Braun, Heather Kuruvilla

Research output: Contribution to journalArticlepeer-review

Abstract

Tetrahymena thermophila are free-living, ciliated eukaryotes. Their behavioral response to stimuli is well characterized and easily observable, since cells swim toward chemoattractants and avoid chemorepellents. Chemoattractant responses involve increased swim speed or a decreased change in swim direction, while chemorepellent signaling involves ciliary reversal, which causes the organism to jerk back and forth, swim in small circles, or spin in an attempt to get away from the repellent. Many food sources, such as proteins, are chemoattractants for these organisms, while a variety of compounds are repellents. Repellents in nature are thought to come from the secretions of predators or from ruptured organisms, which may serve as "danger" signals. Interestingly, several peptides involved in vertebrate pain signaling are chemorepellents in Tetrahymena, including substances P, ACTH, PACAP, VIP, and nociceptin. Here, we characterize the response of Tetrahymena thermophila to three different isoforms of nociceptin. We find that G-protein inhibitors and tyrosine kinase inhibitors do not affect nociceptin avoidance. However, the calcium chelator, EGTA, and the SERCA calcium ATPase inhibitor, thapsigargin, both inhibit nociceptin avoidance, implicating calcium in avoidance. This result is confirmed by electrophysiology studies which show that 50 M nociceptin-NH2 causes a sustained depolarization of approximately 40 mV, which is eliminated by the addition of extracellular EGTA.

Original languageEnglish (US)
Article number573716
JournalInternational Journal of Peptides
Volume2013
DOIs
StatePublished - 2013

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Nociceptin signaling involves a calcium-based depolarization in tetrahymena thermophila'. Together they form a unique fingerprint.

Cite this