TY - JOUR
T1 - Neurophysiological correlates of age-related changes in human motor function
AU - Mattay, V. S.
AU - Fera, F.
AU - Tessitore, A.
AU - Hariri, A. R.
AU - Das, S.
AU - Callicott, J. H.
AU - Weinberger, D. R.
PY - 2002/2/26
Y1 - 2002/2/26
N2 - Background: There are well-defined and characteristic age-related deficits in motor abilities that may reflect structural and chemical changes in the aging brain. Objective: To delineate age-related changes in the physiology of brain systems subserving simple motor behavior. Methods: Ten strongly right-handed young (<35 years of age) and 12 strongly right-handed elderly (>50 years of age) subjects with no evidence of cognitive or motor deficits participated in the study. Whole-brain functional imaging was performed on a 1.5-T MRI scanner using a spiral pulse sequence while the subjects performed a visually paced "button-press" motor task with their dominant right hand alternating with a rest state. Results: Although the groups did not differ in accuracy, there was an increase in reaction time in the elderly subjects (mean score ± SD, young subjects = 547 ± 97 ms, elderly subjects = 794 ± 280 ms, p < 0.03). There was a greater extent of activation in the contralateral sensorimotor cortex, lateral premotor area, supplementary motor area, and ipsilateral cerebellum in the elderly subjects relative to the young subjects (p < 0.001). Additional areas of activation, absent in the young subjects, were seen in the ipsilateral sensorimotor cortex, putamen (left > right), and contralateral cerebellum of the elderly subjects. Conclusions: The results of this study show that elderly subjects recruit additional cortical and subcortical areas even for the performance of a simple motor task. These changes may represent compensatory mechanisms invoked by the aging brain, such as reorganization and redistribution of functional networks to compensate for age-related structural and neurochemical changes.
AB - Background: There are well-defined and characteristic age-related deficits in motor abilities that may reflect structural and chemical changes in the aging brain. Objective: To delineate age-related changes in the physiology of brain systems subserving simple motor behavior. Methods: Ten strongly right-handed young (<35 years of age) and 12 strongly right-handed elderly (>50 years of age) subjects with no evidence of cognitive or motor deficits participated in the study. Whole-brain functional imaging was performed on a 1.5-T MRI scanner using a spiral pulse sequence while the subjects performed a visually paced "button-press" motor task with their dominant right hand alternating with a rest state. Results: Although the groups did not differ in accuracy, there was an increase in reaction time in the elderly subjects (mean score ± SD, young subjects = 547 ± 97 ms, elderly subjects = 794 ± 280 ms, p < 0.03). There was a greater extent of activation in the contralateral sensorimotor cortex, lateral premotor area, supplementary motor area, and ipsilateral cerebellum in the elderly subjects relative to the young subjects (p < 0.001). Additional areas of activation, absent in the young subjects, were seen in the ipsilateral sensorimotor cortex, putamen (left > right), and contralateral cerebellum of the elderly subjects. Conclusions: The results of this study show that elderly subjects recruit additional cortical and subcortical areas even for the performance of a simple motor task. These changes may represent compensatory mechanisms invoked by the aging brain, such as reorganization and redistribution of functional networks to compensate for age-related structural and neurochemical changes.
UR - http://www.scopus.com/inward/record.url?scp=0037176813&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037176813&partnerID=8YFLogxK
U2 - 10.1212/WNL.58.4.630
DO - 10.1212/WNL.58.4.630
M3 - Article
C2 - 11865144
AN - SCOPUS:0037176813
VL - 58
SP - 630
EP - 635
JO - Neurology
JF - Neurology
SN - 0028-3878
IS - 4
ER -