TY - JOUR
T1 - Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders
AU - The PsychENCODE Consortium
AU - Hu, Benxia
AU - Won, Hyejung
AU - Mah, Won
AU - Park, Royce B.
AU - Kassim, Bibi
AU - Spiess, Keeley
AU - Kozlenkov, Alexey
AU - Crowley, Cheynna A.
AU - Pochareddy, Sirisha
AU - Ashley-Koch, Allison E.
AU - Crawford, Gregory E.
AU - Garrett, Melanie E.
AU - Song, Lingyun
AU - Safi, Alexias
AU - Johnson, Graham D.
AU - Wray, Gregory A.
AU - Reddy, Timothy E.
AU - Goes, Fernando S.
AU - Zandi, Peter
AU - Bryois, Julien
AU - Jaffe, Andrew E.
AU - Price, Amanda J.
AU - Ivanov, Nikolay A.
AU - Collado-Torres, Leonardo
AU - Hyde, Thomas M.
AU - Burke, Emily E.
AU - Kleiman, Joel E.
AU - Tao, Ran
AU - Shin, Joo Heon
AU - Girdhar, Kiran
AU - Jiang, Yan
AU - Kundakovic, Marija
AU - Brown, Leanne
AU - Wiseman, Jennifer R.
AU - Zharovsky, Elizabeth
AU - Jacobov, Rivka
AU - Devillers, Olivia
AU - Flatow, Elie
AU - Hoffman, Gabriel E.
AU - Belmont, Judson
AU - Del Valle, Diane
AU - Francoeur, Nancy
AU - Hadjimichael, Evi
AU - Pinto, Dalila
AU - van Bakel, Harm
AU - Roussos, Panos
AU - Fullard, John F.
AU - Bendl, Jaroslav
AU - Hauberg, Mads E.
AU - Charney, Alexander W.
N1 - Funding Information:
We thank members of the Won lab for helpful discussions and comments about this paper. We also thank Sergio Espeso Gil for transferring RNA-seq datasets from NeuN+ and NeuN− cells. This research was supported by the National Institute of Health (NIMH: P50MH106438, R01MH094714, U01MH103339, R01MH110927, R01MH100027, D.H.G.; R00MH113823, DP2MH122403, R21DA051921, R01AG066871, H.W.; U01MH103392, S.A.; R21MH103877, U01MH122590, R01DA044940, S.D.), the Veterans Administration Biomedical Laboratory Research & Development (I01BX002876, S.D.), a NARSAD Young Investigator Award from the Brain and Behavior Research Foundation (H.W.), a SPARK grant from the Simons Foundation Autism Research Initiative (H.W.), and Helen Lyng White Fellowship (W.M.). We also acknowledge the support from the Data Science Core at the UNC IDDRC (P50HD103573). The DLPFC tissue used in this research was obtained from the Human Brain Collection Core, Intramural Research Program, NIMH (http://www.nimh.nih.gov/ hbcc). We thank Drs. Stefano Marenco, Barbara Lipska, and Pavan Auluck for their assistance in tissue procurement.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12/1
Y1 - 2021/12/1
N2 - Cellular heterogeneity in the human brain obscures the identification of robust cellular regulatory networks, which is necessary to understand the function of non-coding elements and the impact of non-coding genetic variation. Here we integrate genome-wide chromosome conformation data from purified neurons and glia with transcriptomic and enhancer profiles, to characterize the gene regulatory landscape of two major cell classes in the human brain. We then leverage cell-type-specific regulatory landscapes to gain insight into the cellular etiology of several brain disorders. We find that Alzheimer’s disease (AD)-associated epigenetic dysregulation is linked to neurons and oligodendrocytes, whereas genetic risk factors for AD highlighted microglia, suggesting that different cell types may contribute to disease risk, via different mechanisms. Moreover, integration of glutamatergic and GABAergic regulatory maps with genetic risk factors for schizophrenia (SCZ) and bipolar disorder (BD) identifies shared (parvalbumin-expressing interneurons) and distinct cellular etiologies (upper layer neurons for BD, and deeper layer projection neurons for SCZ). Collectively, these findings shed new light on cell-type-specific gene regulatory networks in brain disorders.
AB - Cellular heterogeneity in the human brain obscures the identification of robust cellular regulatory networks, which is necessary to understand the function of non-coding elements and the impact of non-coding genetic variation. Here we integrate genome-wide chromosome conformation data from purified neurons and glia with transcriptomic and enhancer profiles, to characterize the gene regulatory landscape of two major cell classes in the human brain. We then leverage cell-type-specific regulatory landscapes to gain insight into the cellular etiology of several brain disorders. We find that Alzheimer’s disease (AD)-associated epigenetic dysregulation is linked to neurons and oligodendrocytes, whereas genetic risk factors for AD highlighted microglia, suggesting that different cell types may contribute to disease risk, via different mechanisms. Moreover, integration of glutamatergic and GABAergic regulatory maps with genetic risk factors for schizophrenia (SCZ) and bipolar disorder (BD) identifies shared (parvalbumin-expressing interneurons) and distinct cellular etiologies (upper layer neurons for BD, and deeper layer projection neurons for SCZ). Collectively, these findings shed new light on cell-type-specific gene regulatory networks in brain disorders.
UR - http://www.scopus.com/inward/record.url?scp=85109028732&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85109028732&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-24243-0
DO - 10.1038/s41467-021-24243-0
M3 - Article
C2 - 34172755
AN - SCOPUS:85109028732
SN - 2041-1723
VL - 12
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 3968
ER -