Neural network design considerations for EEG spike detection

Russell C. Eberhart, Roy W. Dobbins, W. Robert S. Webber

Research output: Contribution to conferencePaper

Abstract

Neural networks are being used to analyze electroencephalogram (EEG) signals for the detection of epileptiform spikes. A review is presented of the design considerations involved in implementing a real-time spike detection system. Issues addressed are generally in two areas. The first is the characterization of the source data. For example, decisions must be made relative to data rates, the number of data channels, and whether to use raw data, or preprocessed data in the form of spike parameters. The second is the selection of the neural network architecture and the specific implementation of that architecture. For example, choices must be made between supervised and unsupervised learning schemes, and among the many available network learning algorithms. A discussion is presented of interim results in an EEG spike detection project, the goal of which is to provide real-time spike detection capability for a multibed epilepsy monitoring unit.

Original languageEnglish (US)
Pages97-98
Number of pages2
StatePublished - Dec 1 1989
EventProceedings of the Fifteenth Annual Northeast Bioengineering Conference - Boston, MA, USA
Duration: Mar 27 1989Mar 28 1989

Other

OtherProceedings of the Fifteenth Annual Northeast Bioengineering Conference
CityBoston, MA, USA
Period3/27/893/28/89

    Fingerprint

ASJC Scopus subject areas

  • Bioengineering

Cite this

Eberhart, R. C., Dobbins, R. W., & Webber, W. R. S. (1989). Neural network design considerations for EEG spike detection. 97-98. Paper presented at Proceedings of the Fifteenth Annual Northeast Bioengineering Conference, Boston, MA, USA, .