NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair

Aaron W. James, Jia Shen, Rebecca Tsuei, Alan Nguyen, Kevork Khadarian, Carolyn A. Meyers, Hsin Chuan Pan, Weiming Li, Jin H. Kwak, Greg Asatrian, Cymbeline T. Culiat, Min Lee, Kang Ting, Xinli Zhang, Chia Soo

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

NELL-1 is a secreted, osteogenic protein first discovered to control ossification of the cranial skeleton. Recently, NELL-1 has been implicated in bone maintenance. However, the cellular determinants of NELL-1's bone-forming effects are still unknown. Here, recombinant human NELL-1 (rhNELL-1) implantation was examined in a clinically relevant nonhuman primate lumbar spinal fusion model. Prolonged rhNELL-1 protein release was achieved using an apatite-coated β-tricalcium phosphate carrier, resulting in a local influx of stem cell antigen-1-positive (Sca-1+) mesenchymal progenitor cells (MPCs), and complete osseous fusion across all samples (100% spinal fusion rate). Murine studies revealed that Nell-1 haploinsufficiency results in marked reductions in the numbers of Sca-1+CD45-CD31- bone marrow MPCs associated with low bone mass. Conversely, rhNELL-1 systemic administration in mice showed a marked anabolic effect accompanied by increased numbers of Sca-1+CD45-CD31- bone marrow MPCs. Mechanistically, rhNELL-1 induces Sca-1 transcription among MPCs, in a process requiring intact Wnt/β-catenin signaling. In summary, NELL-1 effectively induces bone formation across small and large animal models either via local implantation or intravenous delivery. NELL-1 induces an expansion of a bone marrow subset of MPCs with Sca-1 expression. These findings provide compelling justification for the clinical translation of a NELL-1-based therapy for local or systemic bone formation.

Original languageEnglish (US)
Article numbere92573
JournalJournal of Clinical Investigation
Volume2
Issue number12
DOIs
StatePublished - Jun 15 2017

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair'. Together they form a unique fingerprint.

Cite this