Neighborhood size and local geographic variation of health and social determinants

Mohammad Ali, Jin Kyung Park, Vu Dinh Thiem, Do Gia Canh, Michael Emch, John D. Clemens

Research output: Contribution to journalArticle

Abstract

Background: Spatial filtering using a geographic information system (GIS) is often used to smooth health and ecological data. Smoothing disease data can help us understand local (neighborhood) geographic variation and ecological risk of diseases. Analyses that use small neighborhood sizes yield individualistic patterns and large sizes reveal the global structure of data where local variation is obscured. Therefore, choosing an optimal neighborhood size is important for understanding ecological associations with diseases. This paper uses Hartley's test of homogeneity of variance (Fmax) as a methodological solution for selecting optimal neighborhood sizes. The data from a study area in Vietnam are used to test the suitability of this method. Results: The Hartley's Fmax test was applied to spatial variables for two enteric diseases and two socioeconomic determinants. Various neighbourhood sizes were tested by using a two step process to implement the Fmax test. First the variance of each neighborhood was compared to the highest neighborhood variance (upper, Fmax1) and then they were compared with the lowest neighborhood variance (lower, Fmax2). A significant value of Fmax1 indicates that the neighborhood does not reveal the global structure of data, and in contrast, a significant value in Fmax2 implies that the neighborhood data are not individualistic. The neighborhoods that are between the lower and the upper limits are the optimal neighbourhood sizes. Conclusion: The results of tests provide different neighbourhood sizes for different variables suggesting that optimal neighbourhood size is data dependent. In ecology, it is well known that observation scales may influence ecological inference. Therefore, selecting optimal neigborhood size is essential for understanding disease ecologies. The optimal neighbourhood selection method that is tested in this paper can be useful in health and ecological studies.

Original languageEnglish (US)
Article number12
JournalInternational Journal of Health Geographics
Volume4
DOIs
StatePublished - Jun 1 2005

Fingerprint

Social Determinants of Health
Health
Ecology
Geographic information systems
Social determinants
Health determinants
Geographic Information Systems
Vietnam

ASJC Scopus subject areas

  • Computer Science(all)
  • Business, Management and Accounting(all)
  • Public Health, Environmental and Occupational Health

Cite this

Neighborhood size and local geographic variation of health and social determinants. / Ali, Mohammad; Park, Jin Kyung; Thiem, Vu Dinh; Canh, Do Gia; Emch, Michael; Clemens, John D.

In: International Journal of Health Geographics, Vol. 4, 12, 01.06.2005.

Research output: Contribution to journalArticle

Ali, Mohammad ; Park, Jin Kyung ; Thiem, Vu Dinh ; Canh, Do Gia ; Emch, Michael ; Clemens, John D. / Neighborhood size and local geographic variation of health and social determinants. In: International Journal of Health Geographics. 2005 ; Vol. 4.
@article{2cbe1049ad8c4a39b2f7ba8334c6ee20,
title = "Neighborhood size and local geographic variation of health and social determinants",
abstract = "Background: Spatial filtering using a geographic information system (GIS) is often used to smooth health and ecological data. Smoothing disease data can help us understand local (neighborhood) geographic variation and ecological risk of diseases. Analyses that use small neighborhood sizes yield individualistic patterns and large sizes reveal the global structure of data where local variation is obscured. Therefore, choosing an optimal neighborhood size is important for understanding ecological associations with diseases. This paper uses Hartley's test of homogeneity of variance (Fmax) as a methodological solution for selecting optimal neighborhood sizes. The data from a study area in Vietnam are used to test the suitability of this method. Results: The Hartley's Fmax test was applied to spatial variables for two enteric diseases and two socioeconomic determinants. Various neighbourhood sizes were tested by using a two step process to implement the Fmax test. First the variance of each neighborhood was compared to the highest neighborhood variance (upper, Fmax1) and then they were compared with the lowest neighborhood variance (lower, Fmax2). A significant value of Fmax1 indicates that the neighborhood does not reveal the global structure of data, and in contrast, a significant value in Fmax2 implies that the neighborhood data are not individualistic. The neighborhoods that are between the lower and the upper limits are the optimal neighbourhood sizes. Conclusion: The results of tests provide different neighbourhood sizes for different variables suggesting that optimal neighbourhood size is data dependent. In ecology, it is well known that observation scales may influence ecological inference. Therefore, selecting optimal neigborhood size is essential for understanding disease ecologies. The optimal neighbourhood selection method that is tested in this paper can be useful in health and ecological studies.",
author = "Mohammad Ali and Park, {Jin Kyung} and Thiem, {Vu Dinh} and Canh, {Do Gia} and Michael Emch and Clemens, {John D.}",
year = "2005",
month = "6",
day = "1",
doi = "10.1186/1476-072X-4-12",
language = "English (US)",
volume = "4",
journal = "International Journal of Health Geographics",
issn = "1476-072X",
publisher = "BioMed Central",

}

TY - JOUR

T1 - Neighborhood size and local geographic variation of health and social determinants

AU - Ali, Mohammad

AU - Park, Jin Kyung

AU - Thiem, Vu Dinh

AU - Canh, Do Gia

AU - Emch, Michael

AU - Clemens, John D.

PY - 2005/6/1

Y1 - 2005/6/1

N2 - Background: Spatial filtering using a geographic information system (GIS) is often used to smooth health and ecological data. Smoothing disease data can help us understand local (neighborhood) geographic variation and ecological risk of diseases. Analyses that use small neighborhood sizes yield individualistic patterns and large sizes reveal the global structure of data where local variation is obscured. Therefore, choosing an optimal neighborhood size is important for understanding ecological associations with diseases. This paper uses Hartley's test of homogeneity of variance (Fmax) as a methodological solution for selecting optimal neighborhood sizes. The data from a study area in Vietnam are used to test the suitability of this method. Results: The Hartley's Fmax test was applied to spatial variables for two enteric diseases and two socioeconomic determinants. Various neighbourhood sizes were tested by using a two step process to implement the Fmax test. First the variance of each neighborhood was compared to the highest neighborhood variance (upper, Fmax1) and then they were compared with the lowest neighborhood variance (lower, Fmax2). A significant value of Fmax1 indicates that the neighborhood does not reveal the global structure of data, and in contrast, a significant value in Fmax2 implies that the neighborhood data are not individualistic. The neighborhoods that are between the lower and the upper limits are the optimal neighbourhood sizes. Conclusion: The results of tests provide different neighbourhood sizes for different variables suggesting that optimal neighbourhood size is data dependent. In ecology, it is well known that observation scales may influence ecological inference. Therefore, selecting optimal neigborhood size is essential for understanding disease ecologies. The optimal neighbourhood selection method that is tested in this paper can be useful in health and ecological studies.

AB - Background: Spatial filtering using a geographic information system (GIS) is often used to smooth health and ecological data. Smoothing disease data can help us understand local (neighborhood) geographic variation and ecological risk of diseases. Analyses that use small neighborhood sizes yield individualistic patterns and large sizes reveal the global structure of data where local variation is obscured. Therefore, choosing an optimal neighborhood size is important for understanding ecological associations with diseases. This paper uses Hartley's test of homogeneity of variance (Fmax) as a methodological solution for selecting optimal neighborhood sizes. The data from a study area in Vietnam are used to test the suitability of this method. Results: The Hartley's Fmax test was applied to spatial variables for two enteric diseases and two socioeconomic determinants. Various neighbourhood sizes were tested by using a two step process to implement the Fmax test. First the variance of each neighborhood was compared to the highest neighborhood variance (upper, Fmax1) and then they were compared with the lowest neighborhood variance (lower, Fmax2). A significant value of Fmax1 indicates that the neighborhood does not reveal the global structure of data, and in contrast, a significant value in Fmax2 implies that the neighborhood data are not individualistic. The neighborhoods that are between the lower and the upper limits are the optimal neighbourhood sizes. Conclusion: The results of tests provide different neighbourhood sizes for different variables suggesting that optimal neighbourhood size is data dependent. In ecology, it is well known that observation scales may influence ecological inference. Therefore, selecting optimal neigborhood size is essential for understanding disease ecologies. The optimal neighbourhood selection method that is tested in this paper can be useful in health and ecological studies.

UR - http://www.scopus.com/inward/record.url?scp=25444437257&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=25444437257&partnerID=8YFLogxK

U2 - 10.1186/1476-072X-4-12

DO - 10.1186/1476-072X-4-12

M3 - Article

AN - SCOPUS:25444437257

VL - 4

JO - International Journal of Health Geographics

JF - International Journal of Health Geographics

SN - 1476-072X

M1 - 12

ER -