Nanobodies as Probes for Protein Dynamics in Vitro and in Cells

Oleg Y. Dmitriev, Svetlana Lutsenko, Serge Muyldermans

Research output: Contribution to journalReview article


Nanobodies are the recombinant antigen-recognizing domains of the minimalistic heavy chain-only antibodies produced by camels and llamas. Nanobodies can be easily generated, effectively optimized, and variously derivatized with standard molecular biology protocols. These properties have triggered the recent explosion in the nanobody use in basic and clinical research. This review focuses on the emerging use of nanobodies for understanding and monitoring protein dynamics on the scales ranging from isolated protein domains to live cells, from nanoseconds to hours. The small size and high solubility make nanobodies uniquely suited for studying protein dynamics by NMR. The ability to produce conformation-sensitive nanobodies in cells enables studies that link structural dynamics of a target protein to its cellular behavior. The link between in vitro and in-cell dynamics, afforded by nanobodies, brings the analysis of such important events as receptor signaling, membrane protein trafficking, and protein interactions to the next level of resolution.

Original languageEnglish (US)
Pages (from-to)3767-3775
Number of pages9
JournalThe Journal of biological chemistry
Issue number8
StatePublished - Feb 19 2016



  • nanobody
  • nuclear magnetic resonance (NMR)
  • protein domain
  • protein dynamic
  • protein dynamics
  • protein engineering
  • protein structure
  • single-domain antibody (sdAb, nanobody)
  • X-ray crystallography

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this