Multiple transporters associated with malaria parasite responses to chloroquine and quinine

Jianbing Mu, Michael T. Ferdig, Xiaorong Feng, Deirdre A. Joy, Junhui Duan, Tetsuya Furuya, G. Subramanian, L. Aravind, Roland A. Cooper, John C. Wootton, Momiao Xiong, Xin Zhuan Su

Research output: Contribution to journalArticlepeer-review

211 Scopus citations


Mutations and/or overexpression of various transporters are known to confer drug resistance in a variety of organisms. In the malaria parasite Plasmodium falciparum, a homologue of P-glycoprotein, PfMDR1, has been implicated in responses to chloroquine (CQ), quinine (QN) and other drugs, and a putative transporter, PfCRT, was recently demonstrated to be the key molecule in CQ resistance. However, other unknown molecules are probably involved, as different parasite clones carrying the same pfcrt and pfmdr1 alleles show a wide range of quantitative responses to CQ and QN. Such molecules may contribute to increasing incidences of QN treatment failure, the molecular basis of which is not understood. To identify additional genes involved in parasite CQ and QN responses, we assayed the in vitro susceptibilities of 97 culture-adapted cloned isolates to CQ and QN and searched for single nucleotide polymorphisms (SNPs) in DNA encoding 49 putative transporters (total 113 kb) and in 39 housekeeping genes that acted as negative controls. SNPs in 11 of the putative transporter genes, including pfcrt and pfmdr1, showed significant associations with decreased sensitivity to CQ and/or QN in P. falciparum. Significant linkage disequilibria within and between these genes were also detected, suggesting interactions among the transporter genes. This study provides specific leads for better understanding of complex drug resistances in malaria parasites.

Original languageEnglish (US)
Pages (from-to)977-989
Number of pages13
JournalMolecular Microbiology
Issue number4
StatePublished - Aug 2003
Externally publishedYes

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology


Dive into the research topics of 'Multiple transporters associated with malaria parasite responses to chloroquine and quinine'. Together they form a unique fingerprint.

Cite this