Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility

Benoit Palmieri, Yony Bresler, Denis Wirtz, Martin Grant

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

We propose a multiscale model for monolayer of motile cells that comprise normal and cancer cells. In the model, the two types of cells have identical properties except for their elasticity; cancer cells are softer and normal cells are stiffer. The goal is to isolate the role of elasticity mismatch on the migration potential of cancer cells in the absence of other contributions that are present in real cells. The methodology is based on a phase-field description where each cell is modeled as a highly-deformable self-propelled droplet. We simulated two types of nearly confluent monolayers. One contains a single cancer cell in a layer of normal cells and the other contains normal cells only. The simulation results demonstrate that elasticity mismatch alone is sufficient to increase the motility of the cancer cell significantly. Further, the trajectory of the cancer cell is decorated by several speed "bursts" where the cancer cell quickly relaxes from a largely deformed shape and consequently increases its translational motion. The increased motility and the amplitude and frequency of the bursts are in qualitative agreement with recent experiments.

Original languageEnglish (US)
Article number11745
JournalScientific reports
Volume5
DOIs
StatePublished - Jul 2 2015

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Multiple scale model for cell migration in monolayers: Elastic mismatch between cells enhances motility'. Together they form a unique fingerprint.

Cite this