Multimodal registration via mutual information incorporating geometric and spatial context

Jonghye Woo, Maureen Stone, Jerry L. Prince

Research output: Contribution to journalArticlepeer-review

74 Scopus citations


Multimodal image registration is a class of algorithms to find correspondence from different modalities. Since different modalities do not exhibit the same characteristics, finding accurate correspondence still remains a challenge. To deal with this, mutual information (MI)-based registration has been a preferred choice as MI is based on the statistical relationship between both volumes to be registered. However, MI has some limitations. First, MI-based registration often fails when there are local intensity variations in the volumes. Second, MI only considers the statistical intensity relationships between both volumes and ignores the spatial and geometric information about the voxel. In this work, we propose to address these limitations by incorporating spatial and geometric information via a 3D Harris operator. In particular, we focus on the registration between a high-resolution image and a low-resolution image. The MI cost function is computed in the regions where there are large spatial variations such as corner or edge. In addition, the MI cost function is augmented with geometric information derived from the 3D Harris operator applied to the high-resolution image. The robustness and accuracy of the proposed method were demonstrated using experiments on synthetic and clinical data including the brain and the tongue. The proposed method provided accurate registration and yielded better performance over standard registration methods.

Original languageEnglish (US)
Article number7000562
Pages (from-to)757-759
Number of pages3
JournalIEEE Transactions on Image Processing
Issue number2
StatePublished - Feb 1 2015


  • Harris operator
  • Multimodal image registration
  • Mutual information

ASJC Scopus subject areas

  • Software
  • Computer Graphics and Computer-Aided Design


Dive into the research topics of 'Multimodal registration via mutual information incorporating geometric and spatial context'. Together they form a unique fingerprint.

Cite this