Multi-Level targeting of the Phosphatidylinositol-3-Kinase pathway in Non-Small cell lung cancer cells

Christopher R. Zito, Lucia B. Jilaveanu, Valsamo Anagnostou, David Rimm, Gerold Bepler, Sauveur Michel Maira, Wolfgang Hackl, Robert Camp, Harriet M. Kluger, Herta H. Chao

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

Introduction: We assessed expression of p85 and p110α PI3K subunits in non-small cell lung cancer (NSCLC) specimens and the association with mTOR expression, and studied effects of targeting the PI3K/AKT/mTOR pathway in NSCLC cell lines. Methods: Using Automated Quantitative Analysis we quantified expression of PI3K subunits in two cohorts of 190 and 168 NSCLC specimens and correlated it with mTOR expression. We studied effects of two PI3K inhibitors, LY294002 and NVP-BKM120, alone and in combination with rapamycin in 6 NSCLC cell lines. We assessed activity of a dual PI3K/mTOR inhibitor, NVP-BEZ235 alone and with an EGFR inhibitor. Results: p85 and p110α tend to be co-expressed (p<0.001); p85 expression was higher in adenocarcinomas than squamous cell carcinomas. High p85 expression was associated with advanced stage and poor survival. p110α expression correlated with mTOR (ρ = 0.276). In six NSCLC cell lines, addition of rapamycin to LY294002 or NVP-BKM120 was synergistic. Even very low rapamycin concentrations (1 nM) resulted in sensitization to PI3K inhibitors. NVP-BEZ235 was highly active in NSCLC cell lines with IC 50s in the nanomolar range and resultant down-regulation of pAKT and pP70S6K. Adding Erlotinib to NVP-BEZ235 resulted in synergistic growth inhibition. Conclusions: The association between PI3K expression, advanced stage and survival in NSCLC suggests that it might be a valuable drug target. Concurrent inhibition of PI3K and mTOR is synergistic in vitro, and a dual PI3K/mTOR inhibitor was highly active. Adding EGFR inhibition resulted in further growth inhibition. Targeting the PI3K/AKT/mTOR pathway at multiple levels should be tested in clinical trials for NSCLC.

Original languageEnglish (US)
Article numbere31331
JournalPloS one
Volume7
Issue number2
DOIs
StatePublished - Feb 15 2012
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'Multi-Level targeting of the Phosphatidylinositol-3-Kinase pathway in Non-Small cell lung cancer cells'. Together they form a unique fingerprint.

Cite this