MS-BID

A Java package for label-free LC-MS-based comparative proteomic analysis

Daehee Hwang, Ning Zhang, Hookeun Lee, Eugene Yi, Hui Zhang, Inyoul Y. Lee, Leroy Hood, Ruedi Aebersold

Research output: Contribution to journalArticle

Abstract

Summary: MS-BID (MS Biomarker Discovery Platform) is an integrative computational pipeline for biomarker discovery using LC-MS-based comparative proteomic analysis. This platform consists of several computational tools for: (i) detecting peptides in the collected patterns; (ii) matching detected peptides across a number of LC-MS datasets and (iii) selecting discriminatory peptides between classes of samples.

Original languageEnglish (US)
Pages (from-to)2641-2642
Number of pages2
JournalBioinformatics
Volume24
Issue number22
DOIs
StatePublished - Nov 2008
Externally publishedYes

Fingerprint

Proteomics
Biomarkers
Peptides
Java
Labels
Pipelines

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Computational Theory and Mathematics
  • Computer Science Applications
  • Computational Mathematics
  • Statistics and Probability

Cite this

Hwang, D., Zhang, N., Lee, H., Yi, E., Zhang, H., Lee, I. Y., ... Aebersold, R. (2008). MS-BID: A Java package for label-free LC-MS-based comparative proteomic analysis. Bioinformatics, 24(22), 2641-2642. https://doi.org/10.1093/bioinformatics/btn491

MS-BID : A Java package for label-free LC-MS-based comparative proteomic analysis. / Hwang, Daehee; Zhang, Ning; Lee, Hookeun; Yi, Eugene; Zhang, Hui; Lee, Inyoul Y.; Hood, Leroy; Aebersold, Ruedi.

In: Bioinformatics, Vol. 24, No. 22, 11.2008, p. 2641-2642.

Research output: Contribution to journalArticle

Hwang, D, Zhang, N, Lee, H, Yi, E, Zhang, H, Lee, IY, Hood, L & Aebersold, R 2008, 'MS-BID: A Java package for label-free LC-MS-based comparative proteomic analysis', Bioinformatics, vol. 24, no. 22, pp. 2641-2642. https://doi.org/10.1093/bioinformatics/btn491
Hwang, Daehee ; Zhang, Ning ; Lee, Hookeun ; Yi, Eugene ; Zhang, Hui ; Lee, Inyoul Y. ; Hood, Leroy ; Aebersold, Ruedi. / MS-BID : A Java package for label-free LC-MS-based comparative proteomic analysis. In: Bioinformatics. 2008 ; Vol. 24, No. 22. pp. 2641-2642.
@article{1435cab06d1045ea9cdbf9166cfe23bb,
title = "MS-BID: A Java package for label-free LC-MS-based comparative proteomic analysis",
abstract = "Summary: MS-BID (MS Biomarker Discovery Platform) is an integrative computational pipeline for biomarker discovery using LC-MS-based comparative proteomic analysis. This platform consists of several computational tools for: (i) detecting peptides in the collected patterns; (ii) matching detected peptides across a number of LC-MS datasets and (iii) selecting discriminatory peptides between classes of samples.",
author = "Daehee Hwang and Ning Zhang and Hookeun Lee and Eugene Yi and Hui Zhang and Lee, {Inyoul Y.} and Leroy Hood and Ruedi Aebersold",
year = "2008",
month = "11",
doi = "10.1093/bioinformatics/btn491",
language = "English (US)",
volume = "24",
pages = "2641--2642",
journal = "Bioinformatics",
issn = "1367-4803",
publisher = "Oxford University Press",
number = "22",

}

TY - JOUR

T1 - MS-BID

T2 - A Java package for label-free LC-MS-based comparative proteomic analysis

AU - Hwang, Daehee

AU - Zhang, Ning

AU - Lee, Hookeun

AU - Yi, Eugene

AU - Zhang, Hui

AU - Lee, Inyoul Y.

AU - Hood, Leroy

AU - Aebersold, Ruedi

PY - 2008/11

Y1 - 2008/11

N2 - Summary: MS-BID (MS Biomarker Discovery Platform) is an integrative computational pipeline for biomarker discovery using LC-MS-based comparative proteomic analysis. This platform consists of several computational tools for: (i) detecting peptides in the collected patterns; (ii) matching detected peptides across a number of LC-MS datasets and (iii) selecting discriminatory peptides between classes of samples.

AB - Summary: MS-BID (MS Biomarker Discovery Platform) is an integrative computational pipeline for biomarker discovery using LC-MS-based comparative proteomic analysis. This platform consists of several computational tools for: (i) detecting peptides in the collected patterns; (ii) matching detected peptides across a number of LC-MS datasets and (iii) selecting discriminatory peptides between classes of samples.

UR - http://www.scopus.com/inward/record.url?scp=55749105172&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=55749105172&partnerID=8YFLogxK

U2 - 10.1093/bioinformatics/btn491

DO - 10.1093/bioinformatics/btn491

M3 - Article

VL - 24

SP - 2641

EP - 2642

JO - Bioinformatics

JF - Bioinformatics

SN - 1367-4803

IS - 22

ER -