Morphology of synapses formed by cholecystokinin-immunoreactive axon terminals in regio superior of rat hippocampus

Stewart H Hendry, E. G. Jones

Research output: Contribution to journalArticle

Abstract

Immunocytochemical and electron microscopic methods were used to examine neurons in regio superior of rat hippocampus displaying cholecystokinin octapeptide-like immunoreactivity. Cholecystokinin-immunoreactive synaptic terminals and somata are found in all layers of regio superior but are most numerous in stratum pyramidale. The vast majority of terminals form symmetric synaptic contacts onto the somata and proximal dendrites of hippocampal pyramidal cells and onto smaller dendrites which may also arise from pyramidal cells. A very small number of Cholecystokinin-immunoreactive terminals form synapses that appear asymmetric and contact dendritic shafts or spines. The somata of some pyramidal cells receive symmetric synapses from Cholecystokinin-immunoreactive terminals that are joined by cytoplasmic bridges to form parts of pericellular baskets. These and adjacent pyramidal cell somata are also contacted by terminals that are not immunoreactive for cholecystokinin. No cholecystokinin-positive terminals contacted the initial segments of pyramidal cell axons. Cholecystokinin-immunoreactive cells are found in all layers of regio superior. Their somata receive a few symmetric synapses, most of which are formed by terminals not immunoreactive for cholecystokinin. Their dendrites receive a greater number of both symmetric and asymmetric contacts, some of which are immunoreactive for cholecystokinin. We conclude the following: (1) The localization of cholecystokinin immunoreactivity in synaptic terminals contacting the somata and dendrites of hippocampal pyramidal cells is consistent with the suggestion that cholecystokinin acts as a neurotransmitter at these sites and at sites in other parts of the cerebral cortex. (2) Results from the present and previous studies suggest that cholecystokinin-like immunoreactivity may co-exist with γ-aminobutyrate in some non-pyramidal neurons of regio superior. (3) Cholecystokinin-immunoreactive terminals arise mainly from non-pyramidal cells intrinsic to the hippocampus, one class of which appears to be a type of basket cell.

Original languageEnglish (US)
Pages (from-to)57-68
Number of pages12
JournalNeuroscience
Volume16
Issue number1
DOIs
StatePublished - 1985
Externally publishedYes

Fingerprint

Hippocampal CA1 Region
Cholecystokinin
Presynaptic Terminals
Synapses
Pyramidal Cells
Carisoprodol
Dendrites
Aminobutyrates
Neurons
Sincalide
Cerebral Cortex
Neurotransmitter Agents
Axons
Hippocampus
Spine

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Morphology of synapses formed by cholecystokinin-immunoreactive axon terminals in regio superior of rat hippocampus. / Hendry, Stewart H; Jones, E. G.

In: Neuroscience, Vol. 16, No. 1, 1985, p. 57-68.

Research output: Contribution to journalArticle

@article{68904a21609f4749a756e98290696018,
title = "Morphology of synapses formed by cholecystokinin-immunoreactive axon terminals in regio superior of rat hippocampus",
abstract = "Immunocytochemical and electron microscopic methods were used to examine neurons in regio superior of rat hippocampus displaying cholecystokinin octapeptide-like immunoreactivity. Cholecystokinin-immunoreactive synaptic terminals and somata are found in all layers of regio superior but are most numerous in stratum pyramidale. The vast majority of terminals form symmetric synaptic contacts onto the somata and proximal dendrites of hippocampal pyramidal cells and onto smaller dendrites which may also arise from pyramidal cells. A very small number of Cholecystokinin-immunoreactive terminals form synapses that appear asymmetric and contact dendritic shafts or spines. The somata of some pyramidal cells receive symmetric synapses from Cholecystokinin-immunoreactive terminals that are joined by cytoplasmic bridges to form parts of pericellular baskets. These and adjacent pyramidal cell somata are also contacted by terminals that are not immunoreactive for cholecystokinin. No cholecystokinin-positive terminals contacted the initial segments of pyramidal cell axons. Cholecystokinin-immunoreactive cells are found in all layers of regio superior. Their somata receive a few symmetric synapses, most of which are formed by terminals not immunoreactive for cholecystokinin. Their dendrites receive a greater number of both symmetric and asymmetric contacts, some of which are immunoreactive for cholecystokinin. We conclude the following: (1) The localization of cholecystokinin immunoreactivity in synaptic terminals contacting the somata and dendrites of hippocampal pyramidal cells is consistent with the suggestion that cholecystokinin acts as a neurotransmitter at these sites and at sites in other parts of the cerebral cortex. (2) Results from the present and previous studies suggest that cholecystokinin-like immunoreactivity may co-exist with γ-aminobutyrate in some non-pyramidal neurons of regio superior. (3) Cholecystokinin-immunoreactive terminals arise mainly from non-pyramidal cells intrinsic to the hippocampus, one class of which appears to be a type of basket cell.",
author = "Hendry, {Stewart H} and Jones, {E. G.}",
year = "1985",
doi = "10.1016/0306-4522(85)90047-8",
language = "English (US)",
volume = "16",
pages = "57--68",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",
number = "1",

}

TY - JOUR

T1 - Morphology of synapses formed by cholecystokinin-immunoreactive axon terminals in regio superior of rat hippocampus

AU - Hendry, Stewart H

AU - Jones, E. G.

PY - 1985

Y1 - 1985

N2 - Immunocytochemical and electron microscopic methods were used to examine neurons in regio superior of rat hippocampus displaying cholecystokinin octapeptide-like immunoreactivity. Cholecystokinin-immunoreactive synaptic terminals and somata are found in all layers of regio superior but are most numerous in stratum pyramidale. The vast majority of terminals form symmetric synaptic contacts onto the somata and proximal dendrites of hippocampal pyramidal cells and onto smaller dendrites which may also arise from pyramidal cells. A very small number of Cholecystokinin-immunoreactive terminals form synapses that appear asymmetric and contact dendritic shafts or spines. The somata of some pyramidal cells receive symmetric synapses from Cholecystokinin-immunoreactive terminals that are joined by cytoplasmic bridges to form parts of pericellular baskets. These and adjacent pyramidal cell somata are also contacted by terminals that are not immunoreactive for cholecystokinin. No cholecystokinin-positive terminals contacted the initial segments of pyramidal cell axons. Cholecystokinin-immunoreactive cells are found in all layers of regio superior. Their somata receive a few symmetric synapses, most of which are formed by terminals not immunoreactive for cholecystokinin. Their dendrites receive a greater number of both symmetric and asymmetric contacts, some of which are immunoreactive for cholecystokinin. We conclude the following: (1) The localization of cholecystokinin immunoreactivity in synaptic terminals contacting the somata and dendrites of hippocampal pyramidal cells is consistent with the suggestion that cholecystokinin acts as a neurotransmitter at these sites and at sites in other parts of the cerebral cortex. (2) Results from the present and previous studies suggest that cholecystokinin-like immunoreactivity may co-exist with γ-aminobutyrate in some non-pyramidal neurons of regio superior. (3) Cholecystokinin-immunoreactive terminals arise mainly from non-pyramidal cells intrinsic to the hippocampus, one class of which appears to be a type of basket cell.

AB - Immunocytochemical and electron microscopic methods were used to examine neurons in regio superior of rat hippocampus displaying cholecystokinin octapeptide-like immunoreactivity. Cholecystokinin-immunoreactive synaptic terminals and somata are found in all layers of regio superior but are most numerous in stratum pyramidale. The vast majority of terminals form symmetric synaptic contacts onto the somata and proximal dendrites of hippocampal pyramidal cells and onto smaller dendrites which may also arise from pyramidal cells. A very small number of Cholecystokinin-immunoreactive terminals form synapses that appear asymmetric and contact dendritic shafts or spines. The somata of some pyramidal cells receive symmetric synapses from Cholecystokinin-immunoreactive terminals that are joined by cytoplasmic bridges to form parts of pericellular baskets. These and adjacent pyramidal cell somata are also contacted by terminals that are not immunoreactive for cholecystokinin. No cholecystokinin-positive terminals contacted the initial segments of pyramidal cell axons. Cholecystokinin-immunoreactive cells are found in all layers of regio superior. Their somata receive a few symmetric synapses, most of which are formed by terminals not immunoreactive for cholecystokinin. Their dendrites receive a greater number of both symmetric and asymmetric contacts, some of which are immunoreactive for cholecystokinin. We conclude the following: (1) The localization of cholecystokinin immunoreactivity in synaptic terminals contacting the somata and dendrites of hippocampal pyramidal cells is consistent with the suggestion that cholecystokinin acts as a neurotransmitter at these sites and at sites in other parts of the cerebral cortex. (2) Results from the present and previous studies suggest that cholecystokinin-like immunoreactivity may co-exist with γ-aminobutyrate in some non-pyramidal neurons of regio superior. (3) Cholecystokinin-immunoreactive terminals arise mainly from non-pyramidal cells intrinsic to the hippocampus, one class of which appears to be a type of basket cell.

UR - http://www.scopus.com/inward/record.url?scp=0022346577&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0022346577&partnerID=8YFLogxK

U2 - 10.1016/0306-4522(85)90047-8

DO - 10.1016/0306-4522(85)90047-8

M3 - Article

C2 - 3835503

AN - SCOPUS:0022346577

VL - 16

SP - 57

EP - 68

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 1

ER -