Molecular evolution of the pathogenicity island of enterotoxigenic Bacteroides fragilis strains

Augusto A. Franco, Rodney K. Cheng, Gyung Tae Chung, Shaoguang Wu, Hee Bok Oh, Cynthia L. Sears

Research output: Contribution to journalArticle


Enterotoxigenic Bacteroides fragilis (ETBF) strains, which produce a 20- kDa zinc metalloprotease toxin (BFT), have been associated with diarrheal disease in animals and young children. Studying a collection of ETBF and nontoxigenic B. fragilis (NTBF) strains, we found that bft and a second metalloprotease gene (mpII) are contained in an ~6-kb pathogenicity island (termed B. fragilis pathogenicity island or BfPAI) which is present exclusively in all 113 ETBF strains tested (pattern I). Of 191 NTBF strains, 100 (52%) lack both the BfPAI and at least a 12-kb region flanking BfPAI (pattern II), and 82 of 191 NTBF strains (43%) lack the BfPAI but contain the flanking region (pattern III). The nucleotide sequence flanking the left end of the BfPAI revealed a region with the same organization as the mobilization region of the 5-nitroimidazole resistance plasmid pIP417 and the clindamycin resistance plasmid pBFTM10, that is, two mobilization genes (bfmA and bfmB) organized in one operon and a putative origin of transfer (oriT) located in a small, compact region. The region flanking the right end of the BfPAI contains a gene (bfmC) whose predicted protein shares significant identity to the TraD mobilization proteins encoded by plasmids F and R100 from Escherichia coli, Nucleotide sequence analysis of one NTBF pattern III strain (strain I-1345) revealed that bfmB and bfmC are adjacent to each other and separated by a 16-bp GC-rich sequence. Comparison of this sequence with the appropriate sequence of ETBF strain 86-5443-2-2 showed that in this ETBF strain the 16-bp sequence is replaced by the BfPAI. This result defined the BfPAI as being 6,036 bp in length and its precise integration site as being between the bfmB and bfmC stop codons. The G+C content of the BfPAI (35%) and the flanking DNA (47 to 50%) differ greatly from that reported for the B. fragilis chromosome (42%), suggesting that the BfPAI and its flanking region are two distinct genetic elements originating from very different organisms. ETBF strains may have evolved by horizontal transfer of these two genetic elements into a pattern II NTBF strain.

Original languageEnglish (US)
Pages (from-to)6623-6633
Number of pages11
JournalJournal of bacteriology
Issue number21
StatePublished - Nov 1999

ASJC Scopus subject areas

  • Microbiology
  • Molecular Biology

Fingerprint Dive into the research topics of 'Molecular evolution of the pathogenicity island of enterotoxigenic Bacteroides fragilis strains'. Together they form a unique fingerprint.

  • Cite this