Modeling Interventions to Reduce the Spread of Multidrug-Resistant Organisms between Health Care Facilities in a Region

Sarah M. Bartsch, Kim F. Wong, Leslie E. Mueller, Gabrielle M. Gussin, James A. McKinnell, Thomas Tjoa, Patrick T. Wedlock, Jiayi He, Justin Chang, Shruti K. Gohil, Loren G. Miller, Susan S. Huang, Bruce Y. Lee

Research output: Contribution to journalArticlepeer-review

Abstract

Importance: Multidrug-resistant organisms (MDROs) can spread across health care facilities in a region. Because of limited resources, certain interventions can be implemented in only some facilities; thus, decision-makers need to evaluate which interventions may be best to implement. Objective: To identify a group of target facilities and assess which MDRO intervention would be best to implement in the Shared Healthcare Intervention to Eliminate Life-threatening Dissemination of MDROs in Orange County, a large regional public health collaborative in Orange County, California. Design, Setting, and Participants: An agent-based model of health care facilities was developed in 2016 to simulate the spread of methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae (CRE) for 10 years starting in 2010 and to simulate the use of various MDRO interventions for 3 years starting in 2017. All health care facilities (23 hospitals, 5 long-term acute care hospitals, and 74 nursing homes) serving adult inpatients in Orange County, California, were included, and 42 target facilities were identified via network analyses. Exposures: Increasing contact precaution effectiveness, increasing interfacility communication about patients' MDRO status, and performing decolonization using antiseptic bathing soap and a nasal product in a specific group of target facilities. Main Outcomes and Measures: MRSA and CRE prevalence and number of new carriers (ie, transmission events). Results: Compared with continuing infection control measures used in Orange County as of 2017, increasing contact precaution effectiveness from 40% to 64% in 42 target facilities yielded relative reductions of 0.8% (range, 0.5%-1.1%) in MRSA prevalence and 2.4% (range, 0.8%-4.6%) in CRE prevalence in health care facilities countywide after 3 years, averting 761 new MRSA transmission events (95% CI, 756-765 events) and 166 new CRE transmission events (95% CI, 158-174 events). Increasing interfacility communication of patients' MDRO status to 80% in these target facilities produced no changes in the prevalence or transmission of MRDOs. Implementing decolonization procedures (clearance probability: 39% in hospitals, 27% in long-term acute care facilities, and 3% in nursing homes) yielded a relative reduction of 23.7% (range, 23.5%-23.9%) in MRSA prevalence, averting 3515 new transmission events (95% CI, 3509-3521 events). Increasing the effectiveness of antiseptic bathing soap to 48% yielded a relative reduction of 39.9% (range, 38.5%-41.5%) in CRE prevalence, averting 1435 new transmission events (95% CI, 1427-1442 events). Conclusions and Relevance: The findings of this study highlight the ways in which modeling can inform design of regional interventions and suggested that decolonization would be the best strategy for the Shared Healthcare Intervention to Eliminate Life-threatening Dissemination of MDROs in Orange County..

Original languageEnglish (US)
Article numbere2119212
JournalJAMA Network Open
Volume4
Issue number8
DOIs
StatePublished - Aug 4 2021
Externally publishedYes

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint

Dive into the research topics of 'Modeling Interventions to Reduce the Spread of Multidrug-Resistant Organisms between Health Care Facilities in a Region'. Together they form a unique fingerprint.

Cite this