Modeling electrical stimulation of mammalian nerve fibers: A mechanistic versus probabilistic approach

Vijay Sadashivaiah, Pierre Sacre, Yun Guan, William S. Anderson, Sridevi V. Sarma

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Electrical neurostimulation is increasingly used over neuropharmacology to treat various diseases. Despite efforts to model the effects of electrical stimulation, its underlying mechanisms remain unclear. This is because current mechanistic models just quantify the effects that the electrical field produces near the fiber and do not capture interactions between stimulus-initiated action potentials (APs) and underlying physiological activity initiated APs. In this study, we aim to quantify and compare these interactions. We construct two computational models of a nerve fiber of varying degrees of complexity (probabilistic versus mechanistic) each receiving two inputs: the underlying physiological activity at one end of the fiber, and the external stimulus applied to the middle of the fiber. We then define reliability, R, as the percentage of physiological APs that make it to the other end of the nerve fiber. We apply the two inputs to the fiber at various frequencies and analyze reliability. We find that the probabilistic model captures relay properties for low input frequencies (< 10 Hz) but then differs from the mechanistic model if either input has a larger frequency. This is because the probabilistic model only accounts for only (i) inter signal loss of excitability and (ii) collisions between stimulus-initiated action potentials (APs) and underlying physiological activity initiated APs. This first step towards modeling the interactions in a nerve fiber opens up opportunities towards understanding mechanisms of electrical stimulation therapies.

Original languageEnglish (US)
Title of host publication2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationSmarter Technology for a Healthier World, EMBC 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3868-3871
Number of pages4
ISBN (Electronic)9781509028092
DOIs
StatePublished - Sep 13 2017
Event39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017 - Jeju Island, Korea, Republic of
Duration: Jul 11 2017Jul 15 2017

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2017
Country/TerritoryKorea, Republic of
CityJeju Island
Period7/11/177/15/17

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Modeling electrical stimulation of mammalian nerve fibers: A mechanistic versus probabilistic approach'. Together they form a unique fingerprint.

Cite this