TY - JOUR
T1 - Mobility impairment is associated with reduced microstructural integrity of the inferior and superior cerebellar peduncles in elderly with no clinical signs of cerebellar dysfunction
AU - Cavallari, Michele
AU - Moscufo, Nicola
AU - Skudlarski, Pawel
AU - Meier, Dominik
AU - Panzer, Victoria P.
AU - Pearlson, Godfrey D.
AU - White, William B.
AU - Wolfson, Leslie
AU - Guttmann, Charles R.G.
PY - 2013/4/3
Y1 - 2013/4/3
N2 - While the cerebellum plays a critical role in motor coordination and control no studies have investigated its involvement in idiopathic mobility impairment in community-dwelling elderly. In this study we tested the hypothesis that structural changes in the cerebellar peduncles not detected by conventional magnetic resonance imaging are associated with reduced mobility performance. The analysis involved eighty-five subjects (age range: 75-90 years) who had no clinical signs of cerebellar dysfunction. Based on the short physical performance battery (SPPB) score, we defined mobility status of the subjects in the study as normal (score 11-12, n = 26), intermediate (score 9-10, n = 27) or impaired (score < 9, n = 32). We acquired diffusion tensor imaging data to obtain indices of white matter integrity: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). Using a parcellation atlas, regional indices within the superior, middle, and inferior cerebellar peduncles (ICP, MCP, SCP) were calculated and their associations with mobility performance were analyzed. Subjects with impaired mobility showed reduced FA and AD values in the ICP and SCP but not in the MCP. The ICP-FA, ICP-AD and SCP-FA indices showed a significant association with the SPPB score. We also observed significant correlation between ICP-FA and walk time (r = - 0.311, p = 0.004), as well as between SCP-AD and self-paced maximum walking velocity (r = 0.385, p = 0.003) and usual walking velocity (r = 0.400, p = 0.002). In logistic regression analysis ICP-FA and ICP-AD together explained 51% of the variability in the mobility status of a sample comprising the normal and impaired subgroups, and correctly classified more than three-quarters of those subjects. Our findings suggest that presence of microstructural damage, likely axonal, in afferent and efferent connections of the cerebellum contributes to the deterioration of motor performance in older people.
AB - While the cerebellum plays a critical role in motor coordination and control no studies have investigated its involvement in idiopathic mobility impairment in community-dwelling elderly. In this study we tested the hypothesis that structural changes in the cerebellar peduncles not detected by conventional magnetic resonance imaging are associated with reduced mobility performance. The analysis involved eighty-five subjects (age range: 75-90 years) who had no clinical signs of cerebellar dysfunction. Based on the short physical performance battery (SPPB) score, we defined mobility status of the subjects in the study as normal (score 11-12, n = 26), intermediate (score 9-10, n = 27) or impaired (score < 9, n = 32). We acquired diffusion tensor imaging data to obtain indices of white matter integrity: fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). Using a parcellation atlas, regional indices within the superior, middle, and inferior cerebellar peduncles (ICP, MCP, SCP) were calculated and their associations with mobility performance were analyzed. Subjects with impaired mobility showed reduced FA and AD values in the ICP and SCP but not in the MCP. The ICP-FA, ICP-AD and SCP-FA indices showed a significant association with the SPPB score. We also observed significant correlation between ICP-FA and walk time (r = - 0.311, p = 0.004), as well as between SCP-AD and self-paced maximum walking velocity (r = 0.385, p = 0.003) and usual walking velocity (r = 0.400, p = 0.002). In logistic regression analysis ICP-FA and ICP-AD together explained 51% of the variability in the mobility status of a sample comprising the normal and impaired subgroups, and correctly classified more than three-quarters of those subjects. Our findings suggest that presence of microstructural damage, likely axonal, in afferent and efferent connections of the cerebellum contributes to the deterioration of motor performance in older people.
KW - Aging
KW - Cerebellar peduncles
KW - Diffusion tensor imaging
KW - Mobility
UR - http://www.scopus.com/inward/record.url?scp=84875495581&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875495581&partnerID=8YFLogxK
U2 - 10.1016/j.nicl.2013.02.003
DO - 10.1016/j.nicl.2013.02.003
M3 - Article
C2 - 24179787
AN - SCOPUS:84875495581
VL - 2
SP - 332
EP - 340
JO - NeuroImage: Clinical
JF - NeuroImage: Clinical
SN - 2213-1582
IS - 1
ER -