Mitochondrial Expression of the Human Equilibrative Nucleoside Transporter 1 (hENT1) Results in Enhanced Mitochondrial Toxicity of Antiviral Drugs

Yurong Lai, Chung Ming Tse, Jashvant D. Unadkat

Research output: Contribution to journalArticlepeer-review

108 Scopus citations

Abstract

Many antiviral drugs (e.g. fialuridine; FIAU) produce clinically significant mitochondrial toxicity that limits their dose or prevents their use in the clinic. Because the majority of nucleoside drugs is too hydrophilic to cross the highly impermeable mitochondrial membrane, we have hypothesized that they must be transported into the mitochondria to produce their toxicity. To test this hypothesis, we have sought to determine whether the nucleoside transporters, human equilibrative nucleoside transporter 1 (hENT1) or human concentrative nucleoside transporter 1 (hCNT1), when stably expressed in Madin-Darby canine kidney cells as yellow fluorescent fusion protein (YFP), are localized to the mitochondria. By using organelle-selective dyes and confocal microscopy, we have found that hENT1-YFP is localized to the mitochondria as well as the plasma membrane, whereas hCNT1-YFP was found predominantly on the plasma membrane. hENT1-YFP was not localized to the nuclear envelope, endosomes, lysosomes, or Golgi complex. Western blotting confirmed the presence of hENT1-YFP or endogenous hENT1 in mitochondria isolated from hENT1-YFP-expressing cells and human livers, respectively. In agreement with these localization data, [14C]FIAU was efficiently transported into the mitochondria of cells expressing hENT1-YFP but not of cells expressing hCNT1-YFP. The mitochondrial toxicity of FIAU to Madin-Darby canine kidney cells was enhanced by hENT1-YFP, even when hENT1 activity on the plasma membrane was selectively blocked by 10 nM nitrobenzylthioinosine. Moreover, FIAU (50 μM) produced significant mitochondrial toxicity (∼70% decrease in mitochondrial DNA synthesis) when it was directly incubated with mitochondria isolated from hENT1-expressing cells. In conclusion, we have identified for the first time that hENT1 is expressed on the mitochondrial membrane and that this expression enhances the mitochondrial toxicity of nucleoside drugs such as FIAU. Mitochondrial expression of hENTs may explain the clinically significant mitochondrial toxicity caused by the anti-HIV nucleoside drugs such as zidovudine, stavudine, and didanosine.

Original languageEnglish (US)
Pages (from-to)4490-4497
Number of pages8
JournalJournal of Biological Chemistry
Volume279
Issue number6
DOIs
StatePublished - Feb 6 2004

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Mitochondrial Expression of the Human Equilibrative Nucleoside Transporter 1 (hENT1) Results in Enhanced Mitochondrial Toxicity of Antiviral Drugs'. Together they form a unique fingerprint.

Cite this