Microscopic analysis of laser-induced proximal fiber tip damage during holmium: YAG and thulium fiber laser lithotripsy

Christopher R. Wilson, Luke A. Hardy, Pierce B. Irby, Nathaniel M. Fried

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The thulium fiber laser (TFL) is being studied as an alternative to the standard holmium:YAG laser for lithotripsy. The TFL beam originates within an 18-μm-core thulium-doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller (e.g., 50- to 150-μm core) fibers than possible during holmium laser lithotripsy. This study examines whether the more uniform TFL beam profile also reduces proximal fiber tip damage compared with the holmium laser multimodal beam. Light and confocal microscopy images were taken of the proximal surface of each fiber to inspect for possible laser-induced damage. A TFL beam at a wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, and 500-μs pulse duration, and 100,000 pulses were delivered at each pulse rate setting of 50, 100, 200, 300, and 400 Hz. For comparison, single use, 270-μm-core fibers were collected after clinical holmium laser lithotripsy procedures performed with standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output pulse energy and average power were stable, and no proximal fiber damage was observed at settings up to 35 mJ, 400 Hz, and 14 W average power (n = 5). In contrast, confocal microscopy images of fiber tips after holmium lithotripsy showed proximal fiber tip degradation, indicated by small ablation craters on the scale of several micrometers in all fibers (n = 20). In summary, the proximal fiber tip of a 105-μm-core fiber transmitted up to 14 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially translate into lower costs for the surgical disposables as well.

Original languageEnglish (US)
Article number046102
JournalOptical Engineering
Volume55
Issue number4
DOIs
StatePublished - Apr 1 2016
Externally publishedYes

Keywords

  • ablation
  • Damage
  • Fiber
  • Holmium
  • Kidney stones
  • Lithotripsy
  • Proximal
  • Thulium

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • General Engineering

Fingerprint

Dive into the research topics of 'Microscopic analysis of laser-induced proximal fiber tip damage during holmium: YAG and thulium fiber laser lithotripsy'. Together they form a unique fingerprint.

Cite this