Metabolism of N-alkylated spermine analogues by polyamine and spermine oxidases

Merja R. Häkkinen, Mervi T. Hyvönen, Seppo Auriola, Robert A. Casero, Jouko Vepsäläinen, Alex R. Khomutov, Leena Alhonen, Tuomo A. Keinänen

Research output: Contribution to journalArticlepeer-review


N-alkylated polyamine analogues have potential as anticancer and antiparasitic drugs. However, their metabolism in the host has remained incompletely defined thus potentially limiting their utility. Here, we have studied the degradation of three different spermine analogues N,N′-bis-(3-ethylaminopropyl)butane-1,4-diamine (DESPM), N-(3-benzyl-aminopropyl)-N′-(3-ethylamino-propyl)butane-1,4-diamine (BnEtSPM) and N,N′-bis-(3-benzylaminopropyl)butane-1,4-diamine (DBSPM) and related mono-alkylated derivatives as substrates of recombinant human polyamine oxidase (APAO) and spermine oxidase (SMO). APAO and SMO metabolized DESPM to EtSPD [Km(APAO) = 10 μM, kcat(APAO) = 1.1 s -1 and Km(SMO) = 28 μM, kcat(SMO) = 0.8 s-1, respectively], metabolized BnEtSPM to EtSPD [Km(APAO) = 0.9 μM, kcat(APAO) = 1.1 s-1 and Km(SMO) = 51 μM, kcat(SMO) = 0.4 s-1, respectively], and metabolized DBSPM to BnSPD [Km(APAO) = 5.4 μM, k cat(APAO) = 2.0 s-1and Km(SMO) = 33 μM, kcat(SMO) = 0.3 s-1, respectively]. Interestingly, mono-alkylated spermine derivatives were metabolized by APAO and SMO to SPD [EtSPM Km(APAO) =16 μM, kcat(APAO) = 1.5 s -1; Km(SMO) = 25 μM, kcat(SMO) = 8.2 s -1; BnSPM Km(APAO) = 6.0 μM, kcat(APAO) = 2.8 s-1; Km(SMO) =19 μM, kcat(SMO) = 0.8 s-1, respectively]. Surprisingly, EtSPD [Km(APAO) = 37 μM, kcat(APAO) = 0.1 s-1; Km(SMO) =48 μM, kcat(SMO) = 0.05 s-1] and BnSPD [Km(APAO) = 2.5 μM, kcat(APAO) = 3.5 s-1; Km(SMO) =60 μM, kcat(SMO) = 0.54 s-1] were metabolized to SPD by both the oxidases. Furthermore, we studied the degradation of DESPM, BnEtSPM or DBSPM in the DU145 prostate carcinoma cell line. The same major metabolites EtSPD and/or BnSPD were detected both in the culture medium and intracellularly after 48 h of culture. Moreover, EtSPM and BnSPM were detected from cell samples. Present data shows that inducible SMO parallel with APAO could playanimportant roleinpolyamine based drug action, i.e. degradation of parent drug and its metabolites, having significant impact on efficiency of these drugs, and hence for the development of novel N-alkylated polyamine analogues.

Original languageEnglish (US)
Pages (from-to)369-381
Number of pages13
JournalAmino Acids
Issue number2
StatePublished - Feb 2010


  • Flavin-dependent amino-oxidoreductases
  • N-alkylated polyamine analogues
  • Polyamine oxidase
  • Polyamines
  • Spermine oxidase

ASJC Scopus subject areas

  • Biochemistry
  • Clinical Biochemistry
  • Organic Chemistry


Dive into the research topics of 'Metabolism of N-alkylated spermine analogues by polyamine and spermine oxidases'. Together they form a unique fingerprint.

Cite this