Mechanisms of Siglec-F-Induced Eosinophil Apoptosis: A Role for Caspases but Not for SHP-1, Src Kinases, NADPH Oxidase or Reactive Oxygen

Hui Mao, Gen Kano, Sherry A. Hudson, Mary Brummet, Nives Zimmermann, Zhou Zhu, Bruce S. Bochner

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Background:Siglec-F and Siglec-8 are functional paralog proapoptotic cell surface receptors expressed on mouse and human eosinophils, respectively. Whereas Siglec-8 mediated death involves caspases and/or reactive oxygen species (ROS) generation and mitochondrial injury, very little is known about Siglec-F-mediated signaling and apoptosis. Therefore the objective of the current experiments was to better define apoptosis pathways mediated by Siglec-F and Siglec-8. Given that Siglec-F-induced apoptosis is much less robust than Siglec-8-induced apoptosis, we hypothesized that mechanisms involved in cell death via these receptors would differ.Methods:Consequences of engagement of Siglec-F on mouse eosinophils were studied by measuring ROS production, and by performing apoptosis assays using eosinophils from normal, hypereosinophilic, NADPH oxidase-deficient, src homology domain-containing protein tyrosine phosphatase (SHP)-1-deficient, and Lyn kinase-deficient mice. Inhibitors of caspase and Src family kinase activity were also used.Results:Engagement of Siglec-F induced mouse eosinophil apoptosis that was modest in magnitude and dependent on caspase activity. There was no detectable ROS generation, or any role for ROS, NADPH oxidase, SHP-1, or Src family kinases in this apoptotic process.Conclusions:These data suggest that Siglec-F-mediated apoptosis is different in both magnitude and mechanisms when compared to published data on Siglec-8-mediated human eosinophil apoptosis. One likely implication of this work is that models targeting Siglec-F in vivo in mice may not provide identical mechanistic predictions for consequences of Siglec-8 targeting in vivo in humans.

Original languageEnglish (US)
Article numbere68143
JournalPloS one
Volume8
Issue number6
DOIs
StatePublished - Jun 28 2013
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Mechanisms of Siglec-F-Induced Eosinophil Apoptosis: A Role for Caspases but Not for SHP-1, Src Kinases, NADPH Oxidase or Reactive Oxygen'. Together they form a unique fingerprint.

Cite this