Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers

Susan A. Thompson, Craig R. Copeland, Daniel H. Reich, Leslie Tung

Research output: Contribution to journalArticle

Abstract

Background: After cardiac injury, activated cardiac myofibroblasts can influence tissue electrophysiology. Because mechanical coupling through adherens junctions provides a route for intercellular communication, we tested the hypothesis that myofibroblasts exert tonic contractile forces on the cardiomyocytes and affect electric propagation via a process of mechanoelectric feedback. Methods and results: The role of mechanoelectric feedback was examined in transforming growth factor-β-treated monolayers of cocultured myofibroblasts and neonatal rat ventricular cells by inhibiting myofibroblast contraction and blocking mechanosensitive channels. Untreated (control) and transforming growth factor-β-treated (fibrotic) anisotropic monolayers were optically mapped for electrophysiological comparison. Longitudinal conduction velocity, transverse conduction velocity, and normalized action potential upstroke velocity (dV/dtmax) significantly decreased in fibrotic monolayers (14.4±0.7 cm/s [mean±SEM], 4.1±0.3 cm/s [n=53], and 3.1±0.2% per ms [n=14], respectively) compared with control monolayers (27.2±0.8 cm/s, 8.5±0.4 cm/s [n=40], and 4.9±0.1% per ms [n=12], respectively). Application of the excitation-contraction uncoupler blebbistatin or the mechanosensitive channel blocker gadolinium or streptomycin dramatically increased longitudinal conduction velocity, transverse conduction velocity, and dV/dtmax in fibrotic monolayers (35.9±1.5 cm/s, 10.3±0.6 cm/s [n=17], and 4.5±0.1% per ms [n=14], respectively). Similar results were observed with connexin43-silenced cardiac myofibroblasts. Spiral-wave induction in fibrotic monolayers also decreased after the aforementioned treatments. Finally, traction force measurements of individual myofibroblasts showed a significant increase with transforming growth factor-β, a decrease with blebbistatin, and no change with mechanosensitive channel blockers. Conclusions: These observations suggest that myofibroblast-myocyte mechanical interactions develop during cardiac injury, and that cardiac conduction may be impaired as a result of increased mechanosensitive channel activation owing to tension applied to the myocyte by the myofibroblast.

Original languageEnglish (US)
Pages (from-to)2083-2093
Number of pages11
JournalCirculation
Volume123
Issue number19
DOIs
StatePublished - May 17 2011

Fingerprint

Myofibroblasts
Cardiac Myocytes
Transforming Growth Factors
Muscle Cells
Adherens Junctions
Connexin 43
Electrophysiology
Wounds and Injuries
Gadolinium
Traction
Streptomycin
Action Potentials

Keywords

  • arrhythmia
  • conduction
  • electrophysiology
  • myocardial infarction

ASJC Scopus subject areas

  • Physiology (medical)
  • Cardiology and Cardiovascular Medicine

Cite this

Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. / Thompson, Susan A.; Copeland, Craig R.; Reich, Daniel H.; Tung, Leslie.

In: Circulation, Vol. 123, No. 19, 17.05.2011, p. 2083-2093.

Research output: Contribution to journalArticle

Thompson, Susan A. ; Copeland, Craig R. ; Reich, Daniel H. ; Tung, Leslie. / Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers. In: Circulation. 2011 ; Vol. 123, No. 19. pp. 2083-2093.
@article{c0e1e923f7894adc9d6fab15a7625a84,
title = "Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers",
abstract = "Background: After cardiac injury, activated cardiac myofibroblasts can influence tissue electrophysiology. Because mechanical coupling through adherens junctions provides a route for intercellular communication, we tested the hypothesis that myofibroblasts exert tonic contractile forces on the cardiomyocytes and affect electric propagation via a process of mechanoelectric feedback. Methods and results: The role of mechanoelectric feedback was examined in transforming growth factor-β-treated monolayers of cocultured myofibroblasts and neonatal rat ventricular cells by inhibiting myofibroblast contraction and blocking mechanosensitive channels. Untreated (control) and transforming growth factor-β-treated (fibrotic) anisotropic monolayers were optically mapped for electrophysiological comparison. Longitudinal conduction velocity, transverse conduction velocity, and normalized action potential upstroke velocity (dV/dtmax) significantly decreased in fibrotic monolayers (14.4±0.7 cm/s [mean±SEM], 4.1±0.3 cm/s [n=53], and 3.1±0.2{\%} per ms [n=14], respectively) compared with control monolayers (27.2±0.8 cm/s, 8.5±0.4 cm/s [n=40], and 4.9±0.1{\%} per ms [n=12], respectively). Application of the excitation-contraction uncoupler blebbistatin or the mechanosensitive channel blocker gadolinium or streptomycin dramatically increased longitudinal conduction velocity, transverse conduction velocity, and dV/dtmax in fibrotic monolayers (35.9±1.5 cm/s, 10.3±0.6 cm/s [n=17], and 4.5±0.1{\%} per ms [n=14], respectively). Similar results were observed with connexin43-silenced cardiac myofibroblasts. Spiral-wave induction in fibrotic monolayers also decreased after the aforementioned treatments. Finally, traction force measurements of individual myofibroblasts showed a significant increase with transforming growth factor-β, a decrease with blebbistatin, and no change with mechanosensitive channel blockers. Conclusions: These observations suggest that myofibroblast-myocyte mechanical interactions develop during cardiac injury, and that cardiac conduction may be impaired as a result of increased mechanosensitive channel activation owing to tension applied to the myocyte by the myofibroblast.",
keywords = "arrhythmia, conduction, electrophysiology, myocardial infarction",
author = "Thompson, {Susan A.} and Copeland, {Craig R.} and Reich, {Daniel H.} and Leslie Tung",
year = "2011",
month = "5",
day = "17",
doi = "10.1161/CIRCULATIONAHA.110.015057",
language = "English (US)",
volume = "123",
pages = "2083--2093",
journal = "Circulation",
issn = "0009-7322",
publisher = "Lippincott Williams and Wilkins",
number = "19",

}

TY - JOUR

T1 - Mechanical coupling between myofibroblasts and cardiomyocytes slows electric conduction in fibrotic cell monolayers

AU - Thompson, Susan A.

AU - Copeland, Craig R.

AU - Reich, Daniel H.

AU - Tung, Leslie

PY - 2011/5/17

Y1 - 2011/5/17

N2 - Background: After cardiac injury, activated cardiac myofibroblasts can influence tissue electrophysiology. Because mechanical coupling through adherens junctions provides a route for intercellular communication, we tested the hypothesis that myofibroblasts exert tonic contractile forces on the cardiomyocytes and affect electric propagation via a process of mechanoelectric feedback. Methods and results: The role of mechanoelectric feedback was examined in transforming growth factor-β-treated monolayers of cocultured myofibroblasts and neonatal rat ventricular cells by inhibiting myofibroblast contraction and blocking mechanosensitive channels. Untreated (control) and transforming growth factor-β-treated (fibrotic) anisotropic monolayers were optically mapped for electrophysiological comparison. Longitudinal conduction velocity, transverse conduction velocity, and normalized action potential upstroke velocity (dV/dtmax) significantly decreased in fibrotic monolayers (14.4±0.7 cm/s [mean±SEM], 4.1±0.3 cm/s [n=53], and 3.1±0.2% per ms [n=14], respectively) compared with control monolayers (27.2±0.8 cm/s, 8.5±0.4 cm/s [n=40], and 4.9±0.1% per ms [n=12], respectively). Application of the excitation-contraction uncoupler blebbistatin or the mechanosensitive channel blocker gadolinium or streptomycin dramatically increased longitudinal conduction velocity, transverse conduction velocity, and dV/dtmax in fibrotic monolayers (35.9±1.5 cm/s, 10.3±0.6 cm/s [n=17], and 4.5±0.1% per ms [n=14], respectively). Similar results were observed with connexin43-silenced cardiac myofibroblasts. Spiral-wave induction in fibrotic monolayers also decreased after the aforementioned treatments. Finally, traction force measurements of individual myofibroblasts showed a significant increase with transforming growth factor-β, a decrease with blebbistatin, and no change with mechanosensitive channel blockers. Conclusions: These observations suggest that myofibroblast-myocyte mechanical interactions develop during cardiac injury, and that cardiac conduction may be impaired as a result of increased mechanosensitive channel activation owing to tension applied to the myocyte by the myofibroblast.

AB - Background: After cardiac injury, activated cardiac myofibroblasts can influence tissue electrophysiology. Because mechanical coupling through adherens junctions provides a route for intercellular communication, we tested the hypothesis that myofibroblasts exert tonic contractile forces on the cardiomyocytes and affect electric propagation via a process of mechanoelectric feedback. Methods and results: The role of mechanoelectric feedback was examined in transforming growth factor-β-treated monolayers of cocultured myofibroblasts and neonatal rat ventricular cells by inhibiting myofibroblast contraction and blocking mechanosensitive channels. Untreated (control) and transforming growth factor-β-treated (fibrotic) anisotropic monolayers were optically mapped for electrophysiological comparison. Longitudinal conduction velocity, transverse conduction velocity, and normalized action potential upstroke velocity (dV/dtmax) significantly decreased in fibrotic monolayers (14.4±0.7 cm/s [mean±SEM], 4.1±0.3 cm/s [n=53], and 3.1±0.2% per ms [n=14], respectively) compared with control monolayers (27.2±0.8 cm/s, 8.5±0.4 cm/s [n=40], and 4.9±0.1% per ms [n=12], respectively). Application of the excitation-contraction uncoupler blebbistatin or the mechanosensitive channel blocker gadolinium or streptomycin dramatically increased longitudinal conduction velocity, transverse conduction velocity, and dV/dtmax in fibrotic monolayers (35.9±1.5 cm/s, 10.3±0.6 cm/s [n=17], and 4.5±0.1% per ms [n=14], respectively). Similar results were observed with connexin43-silenced cardiac myofibroblasts. Spiral-wave induction in fibrotic monolayers also decreased after the aforementioned treatments. Finally, traction force measurements of individual myofibroblasts showed a significant increase with transforming growth factor-β, a decrease with blebbistatin, and no change with mechanosensitive channel blockers. Conclusions: These observations suggest that myofibroblast-myocyte mechanical interactions develop during cardiac injury, and that cardiac conduction may be impaired as a result of increased mechanosensitive channel activation owing to tension applied to the myocyte by the myofibroblast.

KW - arrhythmia

KW - conduction

KW - electrophysiology

KW - myocardial infarction

UR - http://www.scopus.com/inward/record.url?scp=79957514836&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79957514836&partnerID=8YFLogxK

U2 - 10.1161/CIRCULATIONAHA.110.015057

DO - 10.1161/CIRCULATIONAHA.110.015057

M3 - Article

C2 - 21537003

AN - SCOPUS:79957514836

VL - 123

SP - 2083

EP - 2093

JO - Circulation

JF - Circulation

SN - 0009-7322

IS - 19

ER -