Measuring Patient Mobility in the ICU Using a Novel Noninvasive Sensor

Andy J. Ma, Nishi Rawat, Austin Reiter, Christine Shrock, Andong Zhan, Alex Stone, Anahita Rabiee, Stephanie Griffin, Dale Needham, Suchi Saria

Research output: Contribution to journalArticle

Abstract

Objectives: To develop and validate a noninvasive mobility sensor to automatically and continuously detect and measure patient mobility in the ICU. Design: Prospective, observational study. Setting: Surgical ICU at an academic hospital. Patients: Three hundred sixty-two hours of sensor color and depth image data were recorded and curated into 109 segments, each containing 1,000 images, from eight patients. Interventions: None. Measurements and Main Results: Three Microsoft Kinect sensors (Microsoft, Beijing, China) were deployed in one ICU room to collect continuous patient mobility data. We developed software that automatically analyzes the sensor data to measure mobility and assign the highest level within a time period. To characterize the highest mobility level, a validated 11-point mobility scale was collapsed into four categories: nothing in bed, in-bed activity, out-of-bed activity, and walking. Of the 109 sensor segments, the noninvasive mobility sensor was developed using 26 of these from three ICU patients and validated on 83 remaining segments from five different patients. Three physicians annotated each segment for the highest mobility level. The weighted Kappa (κ) statistic for agreement between automated noninvasive mobility sensor output versus manual physician annotation was 0.86 (95% CI, 0.72-1.00). Disagreement primarily occurred in the "nothing in bed" versus "in-bed activity" categories because "the sensor assessed movement continuously," which was significantly more sensitive to motion than physician annotations using a discrete manual scale. Conclusions: Noninvasive mobility sensor is a novel and feasible method for automating evaluation of ICU patient mobility.

Original languageEnglish (US)
Pages (from-to)630-636
Number of pages7
JournalCritical Care Medicine
Volume45
Issue number4
DOIs
Publication statusPublished - Apr 1 2017

    Fingerprint

Keywords

  • artificial intelligence
  • early ambulation
  • intensive care unit
  • machine learning
  • rehabilitation

ASJC Scopus subject areas

  • Critical Care and Intensive Care Medicine

Cite this