Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4

Yong Li, Xin Li, Robert Wadley, Stephen W. Reddel, Jian C. Qi, Con Archis, Andrew Collins, Elizabeth Clark, Margaret Cooley, Steven Kouts, Hassan M. Naif, Mohammed Alali, Anthony Cunningham, Guang W. Wong, Richard L. Stevens, Steven A. Krilis

Research output: Contribution to journalArticlepeer-review

70 Scopus citations

Abstract

A population of metachromatic cells with mast cell (MC) and basophil features was identified recently in the peripheral blood of patients with several allergic disorders. This study now shows that these metachromatic cells express on their surface the high-affinity IgE receptor (FcεRI), CD4, and the chemokine receptors CCR3, CCR5, and CXCR4, but not the T-cell surface protein CD3 and the monocyte/macrophage surface protein CD68. This population of MCs/basophils can be maintained ex vivo for at least 2 weeks, and a comparable population of cells can be generated in vitro from nongranulated hematopoietic CD3-/CD4+/CD117- progenitors. Both populations of MCs/basophils are susceptible to an M-tropic strain of human immunodeficiency virus 1 (HIV-1). Finally, many patients with acquired immunodeficiency syndrome have HIV-1-infected MCs/basophils in their peripheral blood. Although it is well known that HIV-1 can infect CD4+ T cells and monocytes, this finding is the first example of a human MC or basophil shown to be susceptible to the retrovirus.

Original languageEnglish (US)
Pages (from-to)3484-3490
Number of pages7
JournalBlood
Volume97
Issue number11
DOIs
StatePublished - Jun 1 2001
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Mast cells/basophils in the peripheral blood of allergic individuals who are HIV-1 susceptible due to their surface expression of CD4 and the chemokine receptors CCR3, CCR5, and CXCR4'. Together they form a unique fingerprint.

Cite this