Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites

Roger S. Zou, Alberto Marin-Gonzalez, Yang Liu, Hans B. Liu, Leo Shen, Rachel K. Dveirin, Jay X.J. Luo, Reza Kalhor, Taekjip Ha

Research output: Contribution to journalArticlepeer-review

Abstract

Here we present an approach that combines a clustered regularly interspaced short palindromic repeats (CRISPR) system that simultaneously targets hundreds of epigenetically diverse endogenous genomic sites with high-throughput sequencing to measure Cas9 dynamics and cellular responses at scale. This massive multiplexing of CRISPR is enabled by means of multi-target guide RNAs (mgRNAs), degenerate guide RNAs that direct Cas9 to a pre-determined number of well-mapped sites. mgRNAs uncovered generalizable insights into Cas9 binding and cleavage, revealing rapid post-cleavage Cas9 departure and repair factor loading at protospacer adjacent motif-proximal genomic DNA. Moreover, by bypassing confounding effects from guide RNA sequence, mgRNAs unveiled that Cas9 binding is enhanced at chromatin-accessible regions, and cleavage by bound Cas9 is more efficient near transcribed regions. Combined with light-mediated activation and deactivation of Cas9 activity, mgRNAs further enabled high-throughput study of the cellular response to double-strand breaks with high temporal resolution, revealing the presence, extent (under 2 kb) and kinetics (~1 h) of reversible DNA damage-induced chromatin decompaction. Altogether, this work establishes mgRNAs as a generalizable platform for multiplexing CRISPR and advances our understanding of intracellular Cas9 activity and the DNA damage response at endogenous loci.

Original languageEnglish (US)
Pages (from-to)1433-1444
Number of pages12
JournalNature cell biology
Volume24
Issue number9
DOIs
StatePublished - Sep 2022

ASJC Scopus subject areas

  • Cell Biology

Fingerprint

Dive into the research topics of 'Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites'. Together they form a unique fingerprint.

Cite this