Mass cultured human fibroblasts overexpressing hTERT encounter a growth crisis following an extended period of proliferation

Karen L. MacKenzie, Sonia Franco, Chad May, Michel Sadelain, Malcolm A.S. Moore

Research output: Contribution to journalArticle

Abstract

During the process of immortalization, at least two mortality checkpoints, M1 and M2, must be bypassed. Cells that have bypassed M1 (senescence) have an extended life span, but are not necessarily immortal. Recent studies have shown that ectopic expression of the catalytic subunit of telomerase (hTERT) enables normal human cells to bypass senescence (M1) and oncogene transformed cells to avert crisis (M2) and become immortal. However, it is unclear whether hTERT expression is sufficient for normal human fibroblasts to overcome both M1 and M2 and become immortal. We have investigated the role of telomerase in immortalization by maintaining mass cultures of hTERT-transduced primary human fetal lung fibroblasts (MRC-5 cells) for very long periods of time (more than 2 years). In the present studies, up to 70% of MRC-5 cells were transduced with retroviral vectors that express hTERT. hTERT-transduced cells exhibited high levels of telomerase activity, elongation of telomeres, and proliferation beyond senescence. However, after proliferating for more than 36 population doublings (PDLs) beyond senescence, the overall growth rate of hTERT-expressing cells declined. During theses periods of reduced growth, hTERT-transduced MRC-5 cells exhibited features typical of cells in crisis, including an increased rate of cell death and polyploidy. In some instances, very late passage cells acquired a senescence-like phenotype characterized by arrest in the G1 phase of the cell cycle and greatly reduced DNA synthesis. At the onset of crisis, hTERT-transduced cells expressed high levels of telomerase and had very long telomeres, ranging up to 30 kb. Not all cells succumbed to crisis and, consequently, some cultures have proliferated beyond 240 PDLs, while another culture appears to be permanently arrested at 160 PDLs. Late passage MRC-5 cells, including postcrisis cells, displayed no signs of malignant transformation. Our results are consistent with the model in which telomerase and telomere elongation greatly extends cellular life span without inducing malignant changes. However, these investigations also indicate that hTERT-expressing cells may undergo crisis following an extended life span and that immortality is not the universal outcome of hTERT expression in normal diploid fibroblasts. (C) 2000 Academic Press.

Original languageEnglish (US)
Pages (from-to)336-350
Number of pages15
JournalExperimental cell research
Volume259
Issue number2
DOIs
StatePublished - Sep 15 2000

    Fingerprint

ASJC Scopus subject areas

  • Cell Biology

Cite this